Biomedical Engineering Reference
In-Depth Information
114. I. Kukavica, A. Tuffaha, Well-posedness for the compressible Navier-Stokes-Lamé system
with a free interface. Nonlinearity 25 (11), 3111-3137 (2012)
115. P. Le Tallec, S. Mani, Numerical analysis of a linearized fluid-structure interaction problem.
Numer. Math. 87 , 317-354 (2000)
116. P. Le Tallec, J. Mouro, Fluid structure interaction with large structural displacements.
Comput. Methods Appl. Mech. Eng. 190 , 3039-3067 (2001)
117. D. Lengeler, Global Weak Solutions for An Incompressible, Generalized Newtonian Fluid
Interacting with a Linearly Elastic Koiter Shell (Preprint)
118. D. Lengeler, M. R uicka, Global Weak Solutions for an Incompressible Newtonian Fluid
Interacting with a Linearly Elastic Koiter Shell. Arch. Ration. Mech. Anal. 211 (1), 205-255
(2014)
119. J. Lequeurre, Existence of strong solutions to a fluid-structure system. SIAM J. Math. Anal.
43 (1), 389-410 (2011)
120. J. Lequeurre, Existence of strong solutions for a system coupling the Navier-Stokes equations
and a damped wave equation. J. Math. Fluid Mech. 15 (2), 249-271 (2013)
121. M. Lukácová-Medvid'ová, G. Rusnáková, A. Hundertmark-Zaušková, Kinematic splitting
algorithm for fluid-structure interaction in hemodynamics. Comput. Methods Appl. Mech.
Eng. 265 , 83-106 (2013)
122. J. Málek, K.R. Rajagopal, Mathematical issues concerning the Navier-Stokes equations and
some of its generalizations, in Handbook of Differential Equations , ed. by C.M. Dafermos,
E. Feireisl (North-Holland, Boston, 2005)
123. J. Málek, J. Necas, M. Rokyta, M. Ružicka, Weak and Measure-Valued
Solutions to
Evolutionary PDE's (Chapman and Hall, London, 1996)
124. H.G. Matthies, J. Steindorf, Partitioned but strongly coupled iteration schemes for nonlinear
fluid-structure interaction. Comput. Struct. 80 , 1991-1999 (2002)
125. H.G. Matthies, J. Steindorf, Partitioned strong coupling algorithms for fluid-structure interac-
tion. Comput. Struct. 81 , 805-812 (2003)
126. M.E. Moghadam, Y. Bazilevs, T.-Y. Hsia, I.E. Vignon-Clementel, A.L. Marsden, Modeling
of Congenital Hearts Alliance (MOCHA), a comparison of outlet boundary treatments for
prevention of backflow divergence with relevance to blood flow simulations. Comput. Mech.
48 , 277-291 (2011)
127. D.P. Mok, W.A. Wall, Partitioned analysis schemes for the transient interaction of incompress-
ible flows and nonlinear flexible structures, in Trends in Computational Structural Mechanics ,
ed. by K. Schweizerhof, W.A. Wall, K.U. Bletzinger (International Center for Numerical
Methods in Engineering (CIMNE), Barcelona, 2001)
128. D.P. Mok, W.A. Wall, E. Ramm, Accelerated iterative substructuring schemes for instationary
fluid-structure interaction, in Computational Fluid and Solid Mechanics , ed. by K.J. Bathe
(Elsevier, Amsterdam, 2001), pp. 1325-1328
129. B.Muha,S.Canic, Existence of a weak solution to a nonlinear fluid-structure interaction
problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable
walls. Arch. Ration. Mech. Anal. 207 (3), 919-968 (2013)
130. F. Nobile, C. Vergara, An effective fluid-structure interaction formulation for vascular
dynamics by generalized Robin conditions. SIAM J. Sci. Comput. 30 (2), 731-763 (2008)
131. F. Nobile, C. Vergara, Partitioned algorithms for fluid-structure interaction problems in
haemodynamics. Milan J. Math. 80 , 443-467 (2012)
132. F. Nobile, M. Pozzoli, C. Vergara, Time accurate partitioned algorithms for the solution of
fluid-structure interaction problems in haemodynamics. Comput. Fluids 86 , 470-482 (2013)
133. C.S. Peskin, D.M. McQueen, A three-dimensional computational method for blood flow in
the heart. I. Immersed elastic fibers in a viscous incompressible fluid. J. Comput. Phys. 81 ,
372-405 (1989)
134. S. Piperno, Explicit/implicit fluid/structure staggered procedures with a structural predictor
and fluid subcycling for 2D inviscid aeroelastic simulations. Int. J. Numer. Methods Fluids
25 , 1207-1226 (1997)
Search WWH ::




Custom Search