Biomedical Engineering Reference
In-Depth Information
58. G. Davì, C. Patrono, Platelets activation and atherothrombosis. N. Engl. J. Med. 367 , 2482-
2494 (2007)
59. E.W. Davie, O.D. Ratnoff, Waterfall sequence for intrinsic blood clotting. Science 145 (3638),
1310-1312 (1964)
60. S.L. Diamond, S. Anand, Inner clot diffusion and permeation during fibrinolysis. Biophys. J.
65 (6), 2622-2643 (1993)
61. F. Dong, B. Olsen, N.A. Baker, Computational methods for biomolecular electrostatics, in
Biophysical Tools for Biologists, Volume One: In Vitro Techniques, Volume 84 of Methods in
Cell Biology (Elsevier, Amsterdam, 2008), pp. 843-870
62. R.L. Drake, A general mathematical survey of the coagulation equation, in Topics in
Current Aerosol Research (Part 2), Volume 3 of International Reviews in Aerosol Physics
and Chemistry , ed. by G.M. Hidy, J.R. Brock (Pergamon, Oxford, 1972), pp. 201-376
63. R.L. Drake,
The scalar transport equation of coalescence theory: moments and kernels.
J.
Atmos. Sci. 29 , 537-547 (1972)
64. P.B. Dubovskii, Mathematical theory of coagulation. Technical report, Seoul National
University, Research Institute of Mathematics, Global Analysis Research Center (1994)
65. W. Dzwinel, K. Boryczko, D.A. Yuen, A discrete-particle model of blood dynamics in
capillary vessels. J. Colloid Interface Sci. 258 , 163-173 (2003)
66. W. Dzwinel, D.A. Yuen, K. Boryczko, Bridging diverse physical scales with the discrete-
particle paradigm in modeling colloidal dynamics with mesoscopic features. Chem. Eng. Sci.
61 , 2169-2185 (2006)
67. K.-E. Eilertsen, B. Østerud, The role of blood cells and their microparticles in blood
coagulation. Biochem. Soc. Trans. 33 (2), 418-422 (2005)
68. B. Engquist, P. Lötstedt, B. Sjögreen, Nonlinear filters for efficient shock computation. Math.
Comput. 52 (186), 509-537 (1989)
69. E.A. Ermakova, M.A. Panteleev, E.E. Shnol, Blood coagulation and propagation of autowaves
in flow. Pathophysiol. Haemost. Thromb. 34 (2-3), 135-142 (2006)
70. A. Farina, A. Fasano, J. Mizerski, A new model for blood flow in fenestrated capillaries with
application to ultrafiltration in kidney glomeruli. A.M.S.A. (2014, to appear)
71. A. Fasano, R.F. Santos, A. Sequeira, Blood coagulation: a puzzle for biologists, a maze
for mathematicians, in Modeling of Physiological Flows, Volume 5 of MS&A - Modeling,
Simulation and Applications (Springer, Milan, 2012), pp. 41-75
72. A. Fasano, J. Pavlova, A. Sequeira, A synthetic model for blood coagulation including blood
slip at the vessel wall. Clin. Hemorheol. Microcirc. 54 (1), 1-14 (2013)
73. D.A. Fedosov, G.E. Karniadakis, Triple-decker: interfacing atomistic-mesoscopic-
continuum flow regimes. J. Comput. Phys. 228 (4), 1157-1171 (2009)
74. D.A. Fedosov, H. Noguchi, G. Gompper, Multiscale modeling of blood flow: from single
cells to blood rheology. Biomech. Model. Mechanobiol. 1-20 (2013). doi:10.1007/s10237-
013-0497-9
75. N. Filipovic, M. Kojic, A. Tsuda, Modelling thrombosis using dissipative particle dynamics
method. Philos. Trans. R. Soc. A 366 , 3265-3279 (2008)
76. M.H. Flamm, S.L. Diamond, Multiscale systems biology and physics of thrombosis under
flow. Ann. Biomed. Eng. 40 (11), 2355-2364 (2012)
77. A.L. Fogelson, R.D. Guy, Platelet-wall interactions in continuum models of platelet
thrombosis: formulation and numerical solution. Math. Med. Biol. 21 (4), 293-334 (2004)
78. A.L. Fogelson, R.D. Guy, Immersed-boundary-type models of intravascular platelet aggrega-
tion. Comput. Methods Appl. Mech. Eng. 197 , 2087-2104 (2008)
79. A.L. Fogelson, J.P. Keener,
Toward an understanding of fibrin branching structure.
Phys.
Rev. E 81 (5), 051922-1-051922-9 (2010)
80. A.L. Fogelson, N. Tania, Coagulation under flow: the influence of flow-mediated transport on
the initiation and inhibition of coagulation. Pathophysiol. Haemost. Thromb. 34 (2-3), 91-108
(2006)
81. C. Forrey, M. Muthukumar, Langevin dynamics simulations of genome packing in bacterio-
phage. Biophys. J. 91 , 25-41 (2006)
Search WWH ::




Custom Search