Biomedical Engineering Reference
In-Depth Information
14. F.I. Ataullakhanov, G.T. Guria, V.I. Sarbash, R.I. Volkova, Spatiotemporal dynamics of
clotting and pattern formation in human blood. Biochim. Biophys. Acta Gen. Subj. 1425 (3),
453-468 (1998)
15. F. Bachmann, The discovery of factor X: a personal reminiscence. Thromb. Haemost. 98 (1),
16-19 (2007)
16. P. Bagchi, Mesoscale simulation of blood flow in small vessels. Biophys. J. 92 , 1858-1877
(2007)
17. C.N. Bagot, R. Arya, Virchow and his triad: a question of attribution. Br. J. Haematol. 143 (2),
180-190 (2008)
18. I. Bahar, A.J. Rader, Coarse-grained normal mode analysis in structural biology. Curr. Opin.
Struct. Biol. 15 , 586-592 (2005)
19. F. Bai, Z. Wu, J. Jin, P. Hochendoner, J. Xing, Slow protein conformational change, Allostery
and Network Dynamics, in Protein-Protein Interactions - Computational and Experimental
Tools (InTech, Croatia, 2012), pp. 169-188
20. L. Baronciani, P.M. Manucci, The molecular basis of von Willebrand disease, in Molecular
Hematology , chap. 19, 3rd edn., ed. by D. Provan, J.G. Gribben (Wiley-Blackwell, London,
2010), pp. 233-245
21. C. Basciano, C. Kleinstreuer, S. Hyun, E.A. Finol, A relation between near-wall particle-
hemodynamics and onset of thrombus formation in abdominal aortic aneurysms.
Ann.
Biomed. Eng. 39 (7), 2010-2026 (2011)
22. R.C. Becker,
Cell-based models of coagulation: a paradigm in evolution.
J. Thromb.
Thrombolysis 20 (1), 65-68 (2005)
23. E. Beltrami, J. Jesty, Mathematical analysis of activation thresholds in enzyme-catalyzed
positive feedbacks: application to the feedbacks of blood coagulation. Proc. Natl. Acad. Sci.
USA 92 (19), 8744-8748 (1995)
24. T.K. Belval, J.D. Hellums, Analysis of shear-induced platelet aggregation with population
balance mathematics. Biophys. J. 50 (3), 479-487 (1986)
25. J. Bernard, J.P. Soulier, Sur une nouvelle variété de dystrophie thrombocytaire hémorragipare
congénitale. Sem. Hôp. Paris 24 , 3217-3223 (1948)
26. J. Bernsdorf, S.E. Harrison, S.M. Smith, P.V. Lawford, D.R. Hose, Concurrent numerical
simulation of flow and blood clotting using the lattice Boltzmann technique. Int. J. Bioinform.
Res. Appl. 2 (4), 371-380 (2006)
27. J. Bernsdorf, S.E. Harrison, S.M. Smith, P.V. Lawford, D.R. Hose, Applying the lattice
Boltzmann technique to biofluids: a novel approach to simulate blood coagulation. Comput.
Math. Appl. 55 (7), 1408-1414 (2008)
28. E.X. Berry, A mathematical framework for cloud models. J. Atmos. Sci. 26 , 109-111 (1969)
29. J. Biasetti, P.G. Spazzini, J. Swedenborg, T. Christian Gasser, An integrated fluid-
chemical model toward modeling the formation of intra-luminal thrombus in abdominal aortic
aneurysms. Front. Physiol. 3 , 1-16 (2012)
30. T. Bodnár, On the use of non-linear TVD filters in finite-volume simulations, in
Algoritmy 2012 Proceedings of Contributed Papers and Posters , Bratislava. Faculty of Civil
Engineering, Slovak University of Technology, pp. 190-199 (2012)
31. T. Bodnár, J. Príhoda, Numerical simulation of turbulent free-surface flow in curved channel.
J. Flow Turbulence Combust. 76 (4), 429-442 (2006)
32. T. Bodnár, A. Sequeira, Numerical simulation of the coagulation dynamics of blood. Comput.
Math. Methods Med. 9 (2), 83-104 (2008)
33. T. Bodnár, A. Sequeira, Numerical study of the significance of the non-Newtonian nature
of blood in steady flow through a stenosed vessel, in Advances in Mathematical Fluid
Mechanics , ed. by R. Rannacher, A. Sequeira (Springer, Berlin, 2010), pp. 83-104
34. T. Bodnár, K.R. Rajagopal, A. Sequeira, Simulation of the three-dimensional flow of blood
using a shear-thinning viscoelastic fluid model. Math. Model. Nat. Phenom. 6 (5), 1-24 (2011)
35. T. Bodnár, A. Sequeira, M. Prosi, On the shear-thinning and viscoelastic effects of blood flow
under various flow rates. Appl. Math. Comput. 217 (11), 5055-5067 (2011)
Search WWH ::




Custom Search