Biomedical Engineering Reference
In-Depth Information
53. G. Lube, Stabilized Galerkin finite element methods for convection dominated and incom-
pressible flow problems. Numer. Anal. Math. Model. 29 , 85-104 (1994)
54. J. Lucero, Dynamics of the two-mass model of the vocal folds: equilibria, bifurcations, and
oscillation region. J. Acoust. Soc. Am. 94 (6), 3104-3111 (1993)
55. H. Luo, R. Mittal, X. Zheng, S.A. Bielamowicz, R.J. Walsh, J.K. Hahn, An immersed
boundary method for flow-structure interaction in biological systems with application to
phonation. J. Comput. Phys. 227 (22), 9303-9332 (2008)
56. W. Mattheus, C. Brücker, Asymmetric glottal jet deflection: differences of two and three-
dimensional models. J. Acoust. Soc. Am. 130 (6), EL3739 (2011)
57. R. Mittal, B.D. Erath, M.W. Plesniak, Fluid dynamics of human phonation and speech. Ann.
Rev. Fluid Mech. 45 , 437-467 (2013)
58. J. Neubauer, Z. Zhang, R. Miraghaie, D. Berry, Coherent structures of the near field flow in
a self-oscillating physical model of the vocal folds. J. Acoust. Soc. Am. 121 (2), 1102-1118
(2007)
59. T. Nomura, T.J.R. Hughes, An arbitrary Lagrangian-Eulerian finite element method for
interaction of fluid and a rigid body. Comput. Methods Appl. Mech. Eng. 95 , 115-138 (1992)
60. M.P. Norton, Fundamentals of Noise and Vibration Analysis for Engineers (Cambridge
University Press, Cambridge, 1989)
61. X. Pelorson, A. Hirschberg, R. van Hassel, A. Wijnands, Y. Auregan, Theoretical and
experimental study of quasisteady-flow separation within the glottis during phonation:
application to a modified two-mass model. J. Acoust. Soc. Am. 96 (6), 3416-3431 (1994)
62. P. P o rízková, K. Kozel, J. Horácek, Numerical simulation of unsteady compressible flow in
convergent channel: pressure spectral analysis. J. Appl. Math. 2012 , 9 pp. Article ID 545120
(2012)
63. P. P o rízková, K. Kozel, J. Horácek, Flows in convergent channel: comparison of numerical
results of different mathematical models. Computing 95 , 573-585 (2013)
64. P. P u n cocháˇrová,J.Fürst,K.Kozel,J.Horácek, Numerical solution of compressible flow
with low Mach number through oscillating glottis, in Proceedings of the 9th International
Conference on Flow-Induced Vibration (FIV 2008) (Institute of Thermomechanics AS CR,
Prague, 2008), pp. 135-140
65. P. P u n cochárová-Porízková, J.Fürst, J. Horácek, K. Kozel, Numerical solutions of unsteady
flows with low inlet Mach numbers. Math. Comput. Simul. 80 (8), 1795-1805 (2010)
66. P. P u n cochárová-Porízková, K. Kozel, J. Horácek, Simulation of unsteady compressible flow
in a channel with vibrating walls influence of the frequency. Comput. Fluids 46 (1), 404-410
(2011)
67. C. Renotte, V. Bouffioux, F. Wilquem, Numerical 3D analysis of oscillatory flow in the time-
varying laryngeal channel. J. Biomech. 33 (12), 1637-1644 (2000)
68. D. Sciamarella, C. dAlessandro, On the acoustic sensitivity of a symmetrical two-mass model
of the vocal folds to the variation of control parameters. Acta Acust. United Acust. 90 , 746-
761 (2004)
69. D. Sciamarella, P.L. Qur, Solving for unsteady airflow in a glottal model with immersed
moving boundaries. Eur. J. Mech. B/Fluids 27 , 42-53 (2008)
70. J.H. Seo, R. Mittal, A high-order immersed boundary method for acoustic wave scattering
and low-Mach number flow-induced sound in complex geometries. J. Comput. Phys. 230 (4),
1000-1019 (2011)
71. P. Šidlof, J.G. Švec, J. Horácek, J. Veselý, I. Klepácek, R. Havlík, Geometry of human vocal
folds and glottal channel for mathematical and biomechanical modeling of voice production.
J. Biomech. 41 , 985-995 (2008)
72. P. Šidlof, O. Doaré, O. Cadot, A. Chaigne, Measurement of flow separation in a human vocal
folds model. Exp. Fluids 51 (1), 123-136 (2011)
73. P. Šidlof, J. Horácek, V. Ridký, Parallel CFD simulation of flow in a 3D model of vibrating
human vocal folds. Comput. Fluids 80 , 290-300 (2013)
74. P. Šidlof, S. Zörner, A. Hüppe, Numerical simulation of flow-induced sound in human voice
production, Procedia Eng. 61 (0), 333-340 (2013)
Search WWH ::




Custom Search