Biomedical Engineering Reference
In-Depth Information
121. B. Muha, S. Canic, A nonlinear, 3D fluid-structure interaction problem driven by the
time-dependent dynamic pressure data: a constructive existence proof, Communications in
Information and Systems (CIS) 13 (3), 357-397 (2013)
122. B. Muha, S. Canic, A fluid-stent-artery interaction problem (in preparation)
123. B. Muha, A note on optimal regularity and regularizing effects of point mass coupling for a
heat-wave system (submitted, 2014)
124. C.M. Murea, S. Sy, A fast method for solving fluid-structure interaction problems numeri-
cally. Int. J. Numer. Methods Fluids 60 (10), 1149-1172 (2009)
125. F. Nobile, Numerical approximation of fluid-structure interaction problems with application
to haemodynamics. Ph.D. thesis, EPFL Switzerland, 2001
126. F. Nobile, C. Vergara, An effective fluid-structure interaction formulation for vascular
dynamics by generalized Robin conditions. SIAM J. Sci. Comput. 30 (2), 731-763 (2008)
127. C. Peskin, Numerical analysis of blood flow in the heart. J. Comput. Phys. 25 , 220-252 (1977)
128. C. Peskin, D.M. McQueen, A three-dimensional computational method for blood flow in the
heart I. Immersed elastic fibers in a viscous incompressible fluid.
J. Comput. Phys. 81 (2),
372-405 (1989)
129. M. Persson, R. Ahlgren, T. Jansson, A. Eriksson, H.W. Persson, K. Lindstrom, A new non-
invasive ultrasonic method for simultaneous measurements of longitudinal and radial arterial
wall movements: first in vivo trial. Clin. Physiol. Funct. Imaging 23 (5), 247-251 (2003)
130. G. Pontrelli, A mathematical model of flow in a liquid-filled visco-elastic tube. Med. Biol.
Eng. Comput. 40 (5), 550-556 (2002)
131. A. Quaini, Algorithms for fluid-structure interaction problems arising in hemodynamics.
Ph.D. thesis, EPFL Switzerland, 2009
132. A. Quaini, A. Quarteroni, A semi-implicit approach for fluid-structure interaction based on
an algebraic fractional step method. Math. Models Methods Appl. Sci. 17 (6), 957-985 (2007)
133. A. Quarteroni, M. Tuveri, A. Veneziani, Computational vascular fluid dynamics: problems,
models and methods. Survey article. Comput. Vis. Sci. 2 , 163-197 (2000)
134. J. Rauch, X. Zhang, E. Zuazua, Polynomial decay for a hyperbolic-parabolic coupled system.
J. Math. Pures Appl. (9) 84 (4), 407-470 (2005)
135. J.A. San Martín, V. Starovoitov, M. Tucsnak, Global weak solutions for the two-dimensional
motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal.
161 (2), 113-147 (2002)
136. D.U. Silverthorn, Human Physiology: An Integrated Approach , 4th edn. (Pearson Education,
San Francisco, 2007)
137. J. Simon,
Compact sets in the space L p .0;T I B/.
Ann. Math. Pura Appl. (4) 146 , 65-96
(1987)
138. S. Svedlund, L.M. Gan, Longitudinal wall motion of the common carotid artery can be
assessed by velocity vector imaging. Clin. Physiol. Funct. Imaging 31 (1), 32-38 (2011)
139. J. Tambaca, Notes on the derivation of the cylindrical Koiter shell (2004) Private Communi-
cation
140. R. Temam, Sur la résolution exacte et approchée d'un problème hyperbolique non linéaire de
T. Carleman. Arch. Ration. Mech. Anal. 35 , 351-362 (1969)
141. R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis . Studies in Mathematics
and its Applications, vol. 2 (North-Holland, Amsterdam, 1977)
142. R. van Loon, P. Anderson, J. de Hart, F. Baaijens, A combined fictitious domain/adaptive
meshing method for fluid-structure interaction in heart valves. Int. J. Numer. Methods Fluids
46 , 533-544 (2004)
143. I. Velcic, Nonlinear weakly curved rod by -convergence. J. Elast. 108 (2), 125-150 (2012)
144. S.Z. Zhao, X.Y. Xu, M.W. Collins, The numerical analysis of fluid-solid interactions for blood
flow in arterial structures Part 2: development of coupled fluid-solid algorithms. Proc. Inst.
Mech. Eng. Part H 212 , 241-252 (1998)
145. X. Zhang, E. Zuazua, Long-time behavior of a coupled heat-wave system arising in fluid-
structure interaction. Arch. Ration. Mech. Anal. 184 (1), 49-120 (2007)
Search WWH ::




Custom Search