Biomedical Engineering Reference
In-Depth Information
75. G.P. Galdi, A.L. Silvestre, On the motion of a rigid body in a Navier-Stokes liquid under the
action of a time-periodic force. Indiana Univ. Math. J. 58 (6), 2805-2842 (2009)
76. G.P. Galdi, A. Vaidya, M. Pokorný, D.D. Joseph, J. Feng, Orientation of symmetric bodies
falling in a second-order liquid at nonzero Reynolds number. Math. Models Methods Appl.
Sci. 12 (11), 1653-1690 (2002)
77. J.F. Gerbeau, M. Vidrascu, A quasi-Newton algorithm based on a reduced model for fluid-
structure interactions problems in blood flows. Math. Model. Numer. Anal. 37 , 631-648
(2003)
78. R. Glowinski, Finite element methods for incompressible viscous flow, in Handbook of
Numerical Analysis , vol. 9, ed. by P.G.Ciarlet, J.-L.Lions (North-Holland, Amsterdam, 2003)
79. C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid
with an elastic plate. SIAM J. Math. Anal. 40 (2), 716-737 (2008)
80. B.E. Griffith, On the volume conservation of the immersed boundary method.
Commun.
Comput. Phys. 12 , 401-432 (2012)
81. B.E. Griffith, Immersed boundary model of aortic heart valve dynamics with physiological
driving and loading conditions. Int. J. Numer. Method Biomed. Eng. 28 , 317-345 (2012)
82. B.E. Griffith, X. Luo, Hybrid finite difference/finite element version of the immersed
boundary method (submitted)
83. B.E. Griffith, R.D. Hornung, D.M. McQueen, C.S. Peskin, An adaptive, formally second order
accurate version of the immersed boundary method. J. Comput. Phys. 223 , 10-49 (2007)
84. B.E. Griffith, X. Luo, D.M. McQueen, C.S. Peskin, Simulating the fluid dynamics of natural
and prosthetic heart valves using the immersed boundary method.
Int. J. Appl. Mech. 1 ,
137-177 (2009)
85. G. Guidoboni, R. Glowinski, N. Cavallini, S. Canic, Stable loosely-coupled-type algorithm
for fluid-structure interaction in blood flow. J. Comput. Phys. 228 (18), 6916-6937 (2009)
86. G. Guidoboni, N. Cavallini, R. Glowinski, S. Canic, S. Lapin, A kinematically coupled time-
splitting scheme for fluid-structure interaction in blood flow. Appl. Math. Lett. 22 (5), 684-688
(2009)
87. G. Guidoboni, M. Guidorzi, M. Padula, Continuous dependence on initial data in fluid-
structure motions. J. Math. Fluid Mech. 14 (1), 1-32 (2012)
88. J.D. Hamphrey, Mechanics of the arterial wall: review and directions. Crit. Rev. Biomed.
Eng. 23 (1&2), 1-162 (1995)
89. P. Hansbo, Nitsche's method for interface problems in computational mechanics. GAMM-
Mitt. 28 (2), 183-206 (2005)
90. S. Hansen, E. Zuazua, Exact controllability and stabilization of a vibrating string with an
interior point mass. SIAM J. Control Optim. 33 (5), 1357-1391 (1995)
91. H. Koch, E. Zuazua, A hybrid system of PDE's arising in multi-structure interaction: coupling
of wave equations in n and n 1 space dimensions, in Recent Trends in Partial Differential
Equations . Contemporary Mathematics, vol. 409 (American Mathematical Society, Provi-
dence, 2006), pp. 55-77
92. M. Heil, An efficient solver for the fully coupled solution of large-displacement fluid-structure
interaction problems. Comput. Methods Appl. Mech. Eng. 193 (1-2), 1-23 (2004)
93. T.J.R. Hughes, W.K Liu, T.K. Zimmermann, Lagrangian-Eulerian finite element formulation
for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29 (3), 329-349 (1981)
94. A. Hundertmark-Zaušková, M. Lukácová-Medvidová, Š. Necasová, On the existence of weak
solution to the coupled fluid-structure interaction problem for non-newtonian shear-dependent
fluid (2013, submitted)
95. A. Hundertmark-Zauskova, M. Lukacova-Medvidova, G. Rusnakova, Kinematic splitting
algorithm for fluid-structure interaction in hemodynamics. Comput. Methods Appl. Mech.
Eng. 265 , 83-106 (2013)
96. A. Hundertmark-Zauskova, M. Lukacova-Medvidova, G. Rusnakova, Fluid-Structure Inter-
action for Shear-Dependent Non-Newtonian Fluids. Topics in Mathematical Modeling and
Analysis. Lecture Notes, vol. 7 (Necas Center for Mathematical Modeling, The Check
Republic, 2012), pp. 109-158
Search WWH ::




Custom Search