Biomedical Engineering Reference
In-Depth Information
81. Solioz M, Stoyanov JV (2003) Copper homeostasis in Enterococcus hirae . FEMS Microbiol
Rev 27:183-195
82. Solioz M, Abicht HK, Mermod M, Mancini S (2010) Response of Gram-positive bacteria to
copper stress. J Biol Inorg Chem 15:3-14
83. Stoyanov JV, Hobman JL, Brown NL (2001) CueR (YbbI) of Escherichia coli is a MerR
family regulator controlling expression of the copper exporter CopA. Mol Microbiol
39:502-511
84. Sukhi SS, Shashidhar R, Kumar SA, Bandekar JR (2009) Radiation resistance of Deinococcus
radiodurans R1 with respect to growth phase. FEMS Microbiol Lett 297:49-53
85. Uri N (1961) Physico-chemical aspects of antoxidation. In: Lundberg WO (ed) Autoxid
antioxidants, vol I. Interscience, New York City, pp 55-106
86. Warnes SL, Keevil CW (2011) Mechanism of copper surface toxicity in vancomycin-resistant
enterococci following wet or dry surface contact. Appl Environ Microbiol 77:6049-6059
87. Warnes SL, Green SM, Michels HT, Keevil CW (2010) Biocidal efficacy of copper alloys
against pathogenic enterococci involves degradation of genomic and plasmid DNAs. Appl
Environ Microbiol 76:5390-5401, American Society for Microbiology (ASM)
88. Weaver L, Michels HT, Keevil CW (2008) Survival of Clostridium difficile on copper and
steel: futuristic options for hospital hygiene. J Hosp Infect 68:145-151
89. Weaver L, Michels HT, Keevil CW (2010) Potential for preventing spread of fungi in
air-conditioning systems constructed using copper instead of aluminium. Lett Appl Microbiol
50:18-23
90. Weaver L, Noyce JO, Michels HT, Keevil CW (2010) Potential action of copper surfaces on
meticillin-resistant Staphylococcus aureus . J Appl Microbiol 109:2200-2205
91. Weber DJ, Rutala WA (2001) Use of metals as microbicides in preventing infections in
healthcare. In: Block SS (ed) Disinfection, sterilization, and preservation, vol 9, 5th edn.
Lippincott Williams & Wilkins, Philadelphia, pp 415-30, Retrieved from http://books.google.
com/books?hl=en&lr=&id=3f-kPJ17_TYC&oi=fnd&pg=PR11&dq=Disinfection,+Sterilisation+
and+Preservation&ots=KlDnGx6QF5&sig=UvWes0-YQm6z9tN4mYD3Q6aN0Yo
92. Wheeldon LJ, Worthington T, Lambert PA, Hilton AC, Lowden CJ, Elliott TSJ (2008)
Antimicrobial efficacy of copper surfaces against spores and vegetative cells of Clostridium
difficile : the germination theory. J Antimicrob Chemother 62:522-525, Oxford University
Press
93. Wilks SA, Michels H, Keevil CW (2005) The survival of Escherichia coli O157 on a range of
metal surfaces. Int J Food Microbiol 105:445-454
94. Wilks SA, Michels HT, Keevil CW (2006) Survival of Listeria monocytogenes Scott A on
metal surfaces: implications for cross-contamination. Int J Food Microbiol 111:93-98
95. Yoshida Y, Furuta S, Niki E (1993) Effects of metal chelating agents on the oxidation of lipids
induced by copper and iron. Biochim Biophys Acta 1210:81-88
96. Zhu L, Elguindi J, Rensing C, Ravishankar S (2012) Antimicrobial activity of different copper
alloy surfaces against copper resistant and sensitive Salmonella enterica . Food Microbiol
30:303-310
Search WWH ::




Custom Search