Biomedical Engineering Reference
In-Depth Information
31. Weaver L, Michels HT, Keevil CW (2010) Potential for preventing spread of fungi in
air-conditioning systems constructed using copper instead of aluminium. Lett Appl Microbiol
50(1):18-23
32. Weaver L, Michels HT, Keevil CW (2008) Survival of Clostridium difficile on copper and
steel: futuristic options for hospital hygiene. J Hosp Infect 68(2):145-151
33. Wheeldon LJ et al (2008) Antimicrobial efficacy of copper surfaces against spores and
vegetative cells of Clostridium difficile: the germination theory. J Antimicrob Chemother
62(3):522-525
34. 3M Industrial Mineral Products Division (2004) The Scotchgard Algae Resistant
Roofing System. http://solutions.3m.com/wps/portal/3M/en_US/IMPD/Roofing-Solutions/
Products/Scotchgard-Algae-Resistant/How-It-Works/
35. Schultz TP, Nicholas DD, Preston AF (2007) A brief review of the past, present and future of
wood preservation. Pest Manag Sci 63(8):784-788
36. Weber DJ, Rutala WH (2001) Use of metals as microbivides in preventing infections in
healthcare, 5th edn, Chapter 19, pp 415-430
37. La Torre A, Talocci S, Spera G, Valori R (2008) Control of downy mildew on grapes in
organic viticulture. Commun Agric Appl Biol Sci 73(2):169-178
38. Cooney JJ, Tang RJ (1999) Quantifying effects of antifouling paints on microbial biofilm
formation. Methods Enzymol 310:637-644
39. Cooney TE (1995) Bactericidal activity of copper and noncopper paints. Infect Control Hosp
Epidemiol 16(8):444-450
40. UK Marine Sack Project 2008 (2008) Copper-based antifouling paints. http://www.
ukmarinesac.org.uk/activities/ports/ph4_3_1.htm
41. Mulligan AM, Wilson M, Knowles JC (2003) The effect of increasing copper content
in
phosphate-based
glasses
on
biofilms
of Streptococcus
sanguis. Biomaterials
24(10):1797-1807
42. Neel EA, Ahmed I, Pratten J, Nazhat SN, Knowles JC (2005) Characterisation of antibacterial
copper releasing degradable phosphate glass fibres. Biomaterials 26(15):2247-2254
43. Ditta IB et al (2008) Photocatalytic antimicrobial activity of thin surface films of TiO(2), CuO
and TiO (2)/CuO dual layers on Escherichia coli and bacteriophage T4. Appl Microbiol
Biotechnol 79(1):127-133
44. Noyce JO, Michels H, Keevil CW (2007) Inactivation of influenza A virus on copper versus
stainless steel surfaces. Appl Environ Microbiol 73(8):2748-2750
45. Wilks SA, Michels HT, Keevil CW (2006) Survival of Listeria monocytogenes Scott A on
metal surfaces: implications for cross-contamination. Int J Food Microbiol 111(2):93-98
46. Noyce JO, Michels H, Keevil CW (2006) Use of copper cast alloys to control Escherichia coli
O157 cross-contamination during food processing. Appl Environ Microbiol 72(6):4239-4244
47. Noyce JO, Michels H, Keevil CW (2006) Potential use of copper surfaces to reduce survival of
epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment. J Hosp
Infect 63(3):289-297
48. Wilks SA, Michels H, Keevil CW (2005) The survival of Escherichia coli O157 on a range of
metal surfaces. Int J Food Microbiol 105(3):445-454
49. Faundez G, Troncoso M, Navarrete P, Figueroa G (2004) Antimicrobial activity of copper
surfaces against suspensions of Salmonella enterica and Campylobacter
jejuni. BMC
Microbiol 4(1):19-25
50. Mehtar S, Wiid I, Todorov SD (2008) The antimicrobial activity of copper and copper alloys
against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare
facilities in the Western Cape: an in-vitro study. J Hosp Infect 68(1):45-51
51. Copper Development Association (2008) U.S. EPA Approves Registration of Antimicrobial
Copper Alloys, vol 8. Copper Development Association. http://www.copper.org/about/
pressreleases/2008/pr2008_Mar_25.html
Search WWH ::




Custom Search