Biomedical Engineering Reference
In-Depth Information
103. Sharifahmadian O, Salimijazi HR, Fathi MH, Mostaghimi J, Pershin L (2012) Study of
the antibacterial behavior of wire arc sprayed copper coatings. J Therm Spray Technol
22(2-3):371-379. doi: 10.1007/s11666-012-9842-2
104. Singh G, Beddow JA, Joyce E, Mason T (2013) Production and efficacy testing of antimi-
crobial fabrics for use in hospitals. Antimicrobial Resistance and Infection Control 2(1): 184.
105. Perelshtein I et al (2009) CuO-cotton nanoparticles: formation, morphology and antibacterial
activity. Surf Coat Technol 204:54
106. Rio L et al (2012) Comparison of methods for evaluation of the bactericidal activity of
copper-sputtered surfaces against methicillin-resistant Staphylococcus aureus. Appl Environ
Microbiol 78(23):8176-8182
107. Grace M, Chand N, Bajpai SK (2009) Copper alginate-cotton cellulose (CACC) fibers with
excellent antibacterial properties. J Eng Fibers Fabr 4(3):24-35
108. Borkow G, Gabbay J (2004) Putting copper into action: copper-impregnated products with
potent biocidal activities. FASEB J 18(14):1728-1730
109. Borkow G, Gabbay J (2006) Endowing textiles with permanent potent biocidal properties by
impregnating them with copper oxide. JTATM 5(1):1-3
110. Borkow G, Okon-Levy N, Gabbay J (2010) Copper oxide impregnated wound dressings:
biocidal and safety studies. Wounds 22:310-316
111. Anita S, Ramachandran T, Rajendran R, Koushik CV, Mahalakshmi M (2011) A study of the
antimicrobial property of encapsulated copper oxide nanoparticles on cotton fabric. Text Res
J 81:1081-1088
112. Osorio-Vargas P et al (2011) Antimicrobial Cu-functionalized surfaces prepared by bipolar
asymmetric DC-pulsed magnetron sputtering (DCP). J Photochem Photobiol A 220:70-76
113. Chattopadhyay DP, Patel BH (2010) Effect of nanosized colloidal copper on cotton fabric.
J Eng Fibers Fabr 5:1-6
114. Grace M, Bajpai SK, Chand N (2009) Copper (II) ions and copper nanoparticles-loaded
chemically modified cotton cellulose fibers with fair antibacterial properties. J Appl Polym
Sci 11:757-766
115. Berendjchi A, Khajavi R, Yazdanshenas MS (2011) Fabrication of superhydrophobic and
antibacterial surface on cotton fabric by doped silica-based sols with nanoparticles of copper.
Nanoscale Res Lett 6:594-602
116. Rtimi S, Baghriche O, Pulgarin C, Lavanchy CJ, Kiwi J (2013) Growth of TiO 2 /Cu films by
HiPIMS for accelerated bacterial loss of viability. Surf Coat Technol 232:804-813
117. Borkow G, Gabbay J (2009) An ancient remedy returning to fight microbial, fungal and viral
infections. Curr Chem Biol 3(3):272-278
118. Borkow G, Zatcoff RC, Gabbay J (2009) Reducing the risk of skin pathologies in diabetics by
using copper impregnated socks. Med Hypotheses 73:883-886
119. Borkow G, Zhou SS, Page T, Gabbay J (2010) A novel anti-influenza copper oxide containing
respiratory face mask. PLoS One 5(6):e11295
120. Borkow G (2012) Using copper to fight microorganisms. Curr Chem Biol 6(2):93-103
121. Borkow G, Mellibovsky JC (2012) Resolution of skin maladies of the trapped Chilean
miners: the unplanned underground copper-impregnated antifungal socks “trial”. Arch
Dermatol 148(1):134-136
122. Gargiulo ME, Del Carmen-Elias A, Borkow G (2012) Analysis of the effect of wearing
copper oxide impregnated socks on tinea pedis based on “before and after” pictures - a
statistical follow-up tool. Open Biol J 5:17-22
123. Zatcoff RC, Smith MS, Borkow G (2008) Treatment of tinea pedis with socks containing
copper-oxide impregnated fibers. Foot (Edinb) 18(3):136-141
124. Borkow G, Gabbay J (2005) Copper as a biocidal tool. Curr Med Chem 12(18):2163-2175
125. Borkow G et al (2007) Neutralizing viruses in suspensions by copper oxide based filters.
Antimicrob Agents Chemother 51(7):2605-2607
Search WWH ::




Custom Search