Biology Reference
In-Depth Information
[51] Wend P, et al. Wnt signaling in stem and cancer stem cells. Semin
2010;21(8):855
[73] Muller FJ, et al. Regulatory networks define phenotypic classes of
human stem cell lines. Nature 2008;455(7211):401
63.
[52] Sokol SY. Maintaining embryonic stem cell pluripotency with
Wnt signaling. Development 2011;2011:8.
[53] Berge DT, et al. Embryonic stem cells require Wnt proteins to
prevent differentiation to epiblast stem cells. Nat Cell Biol
2011;13(9):1070 e 5.
[54] Nichols J, Smith A. The origin and identity of embryonic stem
cells. Development 2011;138(1):3 e 8.
[55] Chambers I, et al. Nanog safeguards pluripotency and mediates
germline development. Nature 2007;450(7173):1230 e 4.
[56] Rizzino A. Sox2 and Oct-3/4: a versatile pair of master regulators
that orchestrate the self-renewal and pluripotency of embryonic
stem cells. Wiley Interdiscip Rev Syst Biol Med 2009;
1(2):228 e 36.
[57] Plachta N, et al. Oct4 kinetics predict cell lineage patterning in the
early mammalian embryo. Nat Cell Biol 2011;13(2):117 e 23.
[58] Yu J, et al. Induced pluripotent stem cell lines derived from
human somatic cells. Science 2007;318(5858):1917 e 20.
[59] Ang YS, et al. Stem cells and reprogramming: breaking the
epigenetic barrier? Trends Pharmacol Sci 2011;32(7):394 e 401.
[60] Maekawa M, et al. Direct reprogramming of somatic cells is
promoted by maternal transcription factor Glis1. Nature 2011;
474(7350):225 e 9.
[61] Strumpf D, et al. Cdx2 is required for correct cell fate specifi-
cation and differentiation of trophectoderm in the mouse blasto-
cyst. Development 2005;132(9):2093
5.
[74] Kelder T, et al. WikiPathways: building research communities on
biological pathways. Nucleic Acids Res 2011;40(Database
issue):D1301 e 7.
[75] Porter CJ, et al. StemBase: a resource for the analysis of stem cell
gene expression data. Methods Mol Biol 2007;407:137 e 48.
[76] Schulz H, et al. The FunGenES database: a genomics resource for
mouse embryonic stem cell differentiation. PLoS One 2009;
4(9):e6804.
[77] Barrett T, et al. NCBI GEO: mining tens of millions of expression
profiles e database and tools update. Nucleic Acids Res
2007;35:D760 e 5. Database issue.
[78] Lachmann A, et al. ChEA: transcription factor regulation inferred
from integrating genome-wide ChIP-X experiments. Bio-
informatics. 2010;26(19):2438 e 44.
[79] Jung M, et al. A data integration approach to mapping OCT4 gene
regulatory networks operative in embryonic stem cells and
embryonal carcinoma cells. PLoS One 2010;5(5):e10709.
[80] van den Berg DL, et al. An Oct4-centered protein interaction
network in embryonic stem cells. Cell 2010;6(4):369 e 81.
[81] Pardo M, et al. An expanded Oct4 interaction network: implica-
tions for stem cell biology, development, and disease. Cell
2010;6(4):382
e
e
95.
[82] Lemischka IR. Hooking up with Oct4. Cell 2010;6(4):291
e
2.
[83] Kauffman S. Self-Organization and Selection in Evolution, The
Origins of Order. Oxford: Oxford University Press; 1993.
[84] Kauffman SA. Sequential DNA replication and the control of
differences in gene activity between sister chromatids e
a possible factor in cell differentiation. J Theor Biol 1967;
17(3):483 e 97.
[85] Chaves M, Albert R, Sontag ED. Robustness and fragility of
Boolean models for genetic regulatory networks. J Theor Biol
2005;235(3):431 e 49.
[86] Aracena J, et al. On the robustness of update schedules in Boolean
networks. Biosystems 2009;97(1):1 e 8.
[87] Davidich MI, Bornholdt S. Boolean network model predicts cell
cycle sequence of fission yeast. PLoS One 2008;3(2):e1672.
[88] Shmulevich I, et al. Steady-state analysis of genetic regulatory
networks modelled by probabilistic boolean networks. Comp
Funct Genomics 2003;4(6):601 e 8.
[89] Liang S, Fuhrman S, Somogyi R. Reveal, a general reverse
engineering algorithm for inference of genetic network architec-
tures. Pac Symp Biocomput 1998:18 e 29.
[90] Akutsu T, Miyano S, Kuhara S. Identification of genetic
networks from a small number of gene expression patterns
under the Boolean network model. Pac Symp Biocomput 1999:
17 e 28.
[91] Akutsu T, Miyano S, Kuhara S. Algorithms for inferring quali-
tative models of biological networks. Pac Symp Biocomput
2000:293
e
102.
[62] Fidalgo M, et al. Zfp281 functions as a transcriptional repressor
for pluripotency of mouse embryonic stem cells. Stem Cells
2011;2011(13):736.
[63] Ombrato L, Lluis F, Cosma MP. Regulation of self-renewal and
reprogramming by TCF factors. Cell 2012;11(1):39 e 47.
[64] Andrecut M, et al. A general model for binary cell fate decision gene
circuits with degeneracy: indeterminacy and switch behavior in the
absence of cooperativity. PLoS One 2011;6(5):e19358.
[65] Ptashne M. Principles of a switch. Nat Chem Biol 2011;
7(8):484 e 7.
[66] Papatsenko D, Levine MS. Dual regulation by the Hunchback
gradient in the Drosophila embryo. Proc Natl Acad Sci U S A
2008;105(8):2901 e 6.
[67] Glauche I, et al. Stem cell proliferation and quiescence e two
sides of the same coin. PLoS Comput Biol 2009;5(7):e1000447.
[68] Glauche I, Thielecke L, Roeder I. Cellular aging leads to func-
tional heterogeneity of hematopoietic stem cells: a modeling
perspective. Aging Cell 2011;10(3):457 e 65.
[69] Chickarmane V, Enver T, Peterson C. Computational modeling of
the hematopoietic erythroid-myeloid switch reveals insights into
cooperativity,
e
priming.
irreversibility. PLoS Comput Biol
2009;5(1):e1000268.
[70] Loose M, Swiers G, Patient R. Transcriptional networks regu-
lating hematopoietic cell fate decisions. Curr Opin Hematol
2007;14(4):307
304.
[92] Ideker TE, Thorsson V, Karp RM. Discovery of regulatory
interactions through perturbation: inference and experimental
design. Pac Symp Biocomput 2000:305 e 16.
[93] Lutter D, Bruns P, Theis FJ. An ensemble approach for inferring
semi-quantitative regulatory dynamics for the differentiation of
mouse embryonic dtem cells using prior knowledge. Adv Exp
Med Biol 2012;736:247 e 60.
e
14.
[71] Preisler HD, Kauffman S. A proposal regarding the mechanism
which underlies lineage choice during hematopoietic differentia-
tion. Leuk Res 1999;23(8):685 e 94.
[72] Som A, et al. The PluriNetWork: an electronic representation of
the network underlying pluripotency in mouse, and its applica-
tions. PLoS One 2010;5(12):e15165.
e
Search WWH ::




Custom Search