Biology Reference
In-Depth Information
[5] Kohn KW. Molecular interaction map of the mammalian cell
cycle
[30] Satyanarayana A, Kaldis P. Mammalian cell-cycle regulation:
several Cdks, numerous cyclins and diverse compensatory
mechanisms. Oncogene 2009;28:2925 e 39.
[31] Hsu JY, Reimann JD, Sorensen CS, Lukas J, Jackson PK. E2F-
dependent accumulation of hEmi1 regulates S phase entry by
inhibiting APC(Cdh1). Nat Cell Biol 2002;4:358 e 66.
[32] Pines J. Mitosis: a matter of getting rid of the right protein at the
right time. Trends Cell Biol 2006;16:55 e 63.
[33] Coleman TR, Dunphy WG. Cdc2 regulatory factors. Curr Opin
Cell Biol 1994;6:877 e 82.
[34] Nilsson I, Hoffmann I. Cell cycle regulation by the Cdc25
phosphatase family. Prog Cell Cycle Res 2000;4:107 e 14.
[35] Martin-Castellanos C. Moreno: Recent advances on cyclins,
CDKs and CDK inhibitors. Trends Cell Biol 1997;7:95 e 8.
[36] Besson A, Dowdy SF, Roberts JM. CDK inhibitors: cell cycle
regulators and beyond. Dev Cell 2008;14:159 e 69.
[37] Peters JM. The anaphase promoting complex/cyclosome:
a machine designed to destroy. Nat Rev Mol Cell Biol
2006;7:644 e 56.
[38] Clute P, Pines J. Temporal and spatial control of cyclin B1
destruction in metaphase. Nat Cell Biol 1999;1:82 e 7.
[39] Nasmyth K, Peters JM, Uhlmann F. Splitting the chromosome:
cutting
control
and DNA repair
systems. Mol Biol Cell
1999;10:2703 e 34.
[6] Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B,
Tyson JJ. Integrative analysis of cell cycle control in budding
yeast. Mol Biol Cell 2004;15:3841 e 62.
[7] Chen KC, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, Tyson JJ.
Kinetic analysis of a molecular model of the budding yeast cell
cycle. Mol Biol Cell 2000;11:369 e 91.
[8] Tyson JJ, Chen K, Novak B. Network dynamics and cell physi-
ology. Nat Rev Mol Cell Biol 2001;2:908 e 16.
[9] Mitchison JM. The Biology of the Cell Cycle. Cambridge:
Cambridge University Press; 1971.
[10] Murray A, Hunt T. The Cell Cycle. An Intoduction. New York:
W.H. Freeman and Company; 1993.
[11] Morgan DO. The Cell Cycle: Principles of Control. London.
New Science Press; 2007.
[12] Nasmyth K, Haering CH. Cohesin: its roles and mechanisms.
Annu Rev Genet 2009;43:525 e 58.
[13] Pines J, Rieder CL. Re-staging mitosis: a contemporary view of
mitotic progression. Nat Cell Biol 2001;3:E3 e 6.
[14] Mitchison TJ, Salmon ED. Mitosis: a history of division. Nat Cell
Biol 2001;3:E17 e 21.
[15] Peters JM, Tedeschi A, Schmitz J. The cohesin complex and its
roles in chromosome biology. Genes Dev 2008;22:3089 e 114.
[16] Nezi L, Musacchio A. Sister chromatid tension and the spindle
assembly checkpoint. Curr Opin Cell Biol 2009;21:785 e 95.
[17] Tyson JJ, Novak B. Temporal organization of the cell cycle. Curr
Biol 2008;18:R759 e 68.
[18] Elledge SJ. Cell cycle checkpoints: preventing an identity crisis.
Science 1996;274:1664 e 72.
[19] Tyson JJ, Novak B. Regulation of the eukaryotic cell cycle:
molecular antagonism, hysteresis, and irreversible transitions.
J Theor Biol 2001;210:249 e 63.
[20] Tyson JJ, Novak B, Chen K, Val J. Checkpoints in the cell
cycle from a modeler's perspective. Prog Cell Cycle Res
1995;1:1 e 8.
[21] Murray AW. Creative blocks: cell-cycle checkpoints and feedback
controls. Nature 1992;359:599 e 604.
[22] Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A,
Dephoure N, et al. Global analysis of protein expression in yeast.
Nature 2003;425:737 e 41.
[23] Zenklusen D, Larson DR, Singer RH. Single-RNA counting
reveals alternative modes of gene expression in yeast. Nat Struct
Mol Biol 2008;15:1263 e 71.
[24] Pedraza JM, Paulsson J. Effects of molecular memory and
bursting on fluctuations in gene expression. Science 2008;
319:339 e 43.
[25] Swain PS, Elowitz MB, Siggia ED. Intrinsic and extrinsic
contributions to stochasticity in gene expression. Proc Natl Acad
Sci U S A 2002;99:12795 e 800.
[26] Murray AW. Recycling the cell cycle: cyclins revisited. Cell
2004;116:221 e 34.
[27] Morgan DO. Principles of CDK regulation. Nature 1995;
374:131 e 4.
[28] Sherr CJ. Cancer cell cycles. Science 1996;274:1672 e 7.
[29] Vodermaier HC. APC/C and SCF: controlling each other and the
cell cycle. Curr Biol 2004;14:R787 e 796.
the
ties
that
bind
sister
chromatids.
Science
2000;288:1379 e 85.
[40] Musacchio A, Salmon ED. The spindle-assembly checkpoint in
space and time. Nat Rev Mol Cell Biol 2007;8:379 e 93.
[41] Sullivan M, Morgan DO. Finishing mitosis, one step at a time. Nat
Rev Mol Cell Biol 2007;8:894 e 903.
[42] Hayles J, Fisher D, Woollard A, Nurse P. Temporal order of
S phase and mitosis in fission yeast is determined by the state of
the p34cdc2-mitotic B cyclin complex. Cell 1994;78:813 e 22.
[43] Lee HO, Davidson JM, Duronio RJ. Endoreplication: polyploidy
with purpose. Genes Dev 2009;23:2461 e 77.
[44] Michael WM, Newport J. Coupling of mitosis to the completion
of S phase through Cdc34-mediated degradation of Wee1. Science
1998;282:1886 e 9.
[45] Novak B, Tyson JJ, Gyorffy B, Csikasz-Nagy A. Irreversible cell-
cycle transitions are due to systems-level feedback. Nat Cell Biol
2007;9:724 e 8.
[46] Bloom J, Cross FR. Multiple levels of cyclin specificity in cell-
cycle control. Nat Rev Mol Cell Biol 2007;8:149 e 60.
[47] Nasmyth K. At the heart of the budding yeast cell cycle. Trends
Genet 1996;12:405 e 12.
[48] Piatti S, Bohm T, Cocker JH, Diffley JF, Nasmyth K. Activation
of S-phase-promoting CDKs in late G1 defines a 'point of no
return' after which Cdc6 synthesis cannot promote DNA repli-
cation in yeast. Genes Dev 1996;10:1516 e 31.
[49] Cross FR, Archambault V, Miller M, Klovstad M. Testing
a mathematical model of the yeast cell cycle. Mol Biol Cell
2002;13:52 e 70.
[50] Lopez-Aviles S, Kapuy O, Novak B, Uhlmann F. Irreversibility of
mitotic exit is the consequence of systems-level feedback. Nature
2009;459:592 e 5.
[51] Cross FR. Starting the cell cycle: what's the point? Curr Opin Cell
Biol 1995;7:790 e 7.
[52] Costanzo M, Nishikawa JL, Tang X, Millman JS, Schub O,
Breitkreuz K, et al. CDK activity antagonizes Whi5, an inhibitor
of G1/S transcription in yeast. Cell 2004;117:899 e 913.
Search WWH ::




Custom Search