Biology Reference
In-Depth Information
[103] Rost B. Enzyme function less conserved than anticipated. J Mol
Biol 2002;318:595
[122] Segre D, Vitkup D, Church G. Analysis of optimality in natural
and perturbed metabolic networks. Proc Natl Acad Sci USA
2002;99:15112
608.
[104] Aronson H, Royer W, Hendrickson W. Quantification of tertiary
structural conservation despite primary sequence drift
e
7
[123] Edwards JS, Palsson BO. The Escherichia coli MG1655 in silico
metabolic genotype: its definition, characteristics, and capabil-
ities. Proc Natl Acad Sci USA 2000;97:5528 e 33.
[124] Bornberg-Bauer E, Chan H. Modeling evolutionary landscapes:
mutational stability, topology, and superfunnels in sequence
space. Proc Natl Acad Sci USA 1999;96:10689 e 94
[125] Meiklejohn C, Hartl D. A single mode of canalization. Trends
Ecol Evol 2002;17:468 e 73.
[126] Wagner A. Robustness and Evolvability in Living Systems.
Princeton, NJ: Princeton University Press; 2005.
[127] Wagner GP, Booth G, Bagherichaichian H. A population genetic
theory of canalization. Evolution 1997;51:329 e 47.
[128] Papp B, Teusink B, Notebaart RA. A critical view of metabolic
network adaptations. HFSP J 2009;3:24 e 35.
[129] Soyer OS, Pfeiffer T. Evolution under fluctuating environments
explains observed robustness in metabolic networks. PLOS
Comput Biol 2010;6:e1000907.
[130] Vitkup D, Kharchenko P, Wagner A. Influence of metabolic
network structure and function on enzyme evolution. Genome
Biol 2006;7:R39.
[131] Papp B, Pal C, Hurst LD. Metabolic network analysis of the
causes and evolution of enzyme dispensability in yeast. Nature
2004;429:661
e
in the
globin fold. Prot Sci 1994;3:1706 e 11.
[105] Hardison RC. A brief history of hemoglobins: Plant, animal,
protist, and bacteria. Proc Natl Acad Sci USA 1996;93:5675 e 9.
[106] Goodman M, Pedwaydon J, Czelusniak J, Suzuki T, Gotoh T,
Moens L, et al. An evolutionary tree for invertebrate globin
sequences. J Mol Evol 1988;27:236 e 49.
[107] Copley RR, Bork P. Homology among ( ba ) 8 barrels: Implications
for
the
evolution
of metabolic pathways.
J Mol Biol
2000;303:627 e 40.
[108] Wierenga RK. The TIM-barrel fold: a versatile framework for
efficient enzymes. FEBS Lett 2001;492:193 e 8.
[109] Schuster P. Molecular insights into evolution of phenotypes. In:
Crutchfield JP, Schuster P, editors. Evolutionary dynamics: Exploring
the Interplay of Selection, Accident, Neutrality, and Function. New
York, NY: Oxford University Press; 2003. p. 163 e 215.
[110] Ferrada E, Wagner A. Evolutionary innovation and the organi-
zation of protein functions in sequence space. PLoS ONE
2010;5(11):e14172.
[111] Huynen MA. Exploring phenotype space through neutral evolu-
tion. J Mol Evol 1996;43:165
9.
[112] Eigen M. Viral Quasi-species. Scientific American 1993;269:42
e
9.
[113] True JR, Carroll SB. Gene co-option in physiological and
morphological
e
4.
[132] Nishikawa T, Gulbahce N, Motter A. E. Spontaneous Reaction
Silencing in Metabolic Optimization. PLOS Comput Biol
2008;4:e1000236
[133] Freilich S, Kreimer A, Borenstein E, Gophna U, Sharan R,
Ruppin E. Decoupling environment-dependent and independent
genetic robustness across bacterial species. PLOS Comput Biol
2010;6:e1000690.
[134] Reed JL, Vo TD, Schilling CH, Palsson BO. An expanded
genome-scale model of Escherichia coli K-12 (iJR904 GSM/
GPR). Genome Biol 2003;4:R54.
[135] Thomas GH, Zucker J, MacDonald SJ, Sorokin A, Goryanin I,
Douglas AE. A fragile metabolic network adapted for cooperation
in the symbiotic bacterium Buchnera aphidicola. BMC Syst Biol
2009;3:24.
[136] Pal C, Papp B, Lercher MJ, Csermely P, Oliver SG, Hurst LD.
Chance and necessity in the evolution of minimal metabolic
networks. Nature 2006;440:667 e 70.
[137] Yus E, Maier T, Michalodimitrakis K, van Noort V, Yamada T,
Chen WH, et al. Impact of genome reduction on bacterial
metabolism and its regulation. Science 2009;326:1263 e 8.
[138] Benfey PN, Mitchell-Olds T. Perspective e from genotype to
phenotype: systems biology meets natural variation. Science
2008;320:495
e
evolution. Annu
Rev
Cell Dev
Biol
2002;18:53 e 80.
[114] Panganiban G, Rubenstein JLR. Developmental functions of the
Distal-less/Dlx homeobox genes. Development 2002;129:4371 e 86.
[115] Huang W, Petrosino J, Hirsch M, Shenkin P, Palzkill T. Amino
acid sequence determinants of beta-lactamase structure and
activity. J Mol Biol 1996;258:688 e 703.
[116] Rennell D, Bouvier S, Hardy L, Poteete A. Systematic mutation
of bacteriophage T4 lysozyme. J Mol Biol 1991;222:67 e 87.
[117] Weatherall DJ, Clegg JB. Molecular genetics of human haemo-
globin. Annu Rev Genet 1976;10:157 e 78.
[118] Kleina L, Miller J. Genetic studies of the lac repressor. 13.
Extensive amino-acid replacements generated by the use of
natural
and synthetic nonsense
suppressors.
J Mol Biol
1990;212:295 e 318.
[119] Wang Z, Zhang J. Abundant indispensable redundancies in cellular
metabolic networks. Genome Biol Evol 2009;1:23 e 33.
[120] Blank LM, Kuepfer L, Sauer U. Large-scale C-13-flux analysis
reveals mechanistic principles of metabolic network robustness to
null mutations in yeast. Genome Biol 2005;6:R49.
[121] Stelling J, Klamt S, Bettenbrock K, Schuster S, Gilles ED.
Metabolic network structure determines key aspects of function-
ality and regulation. Nature 2002;420:190
3.
7.
e
e
Search WWH ::




Custom Search