Biology Reference
In-Depth Information
[81] Barabasi AL, Oltvai ZN. Network biology: understanding the
cell's functional organization. Nat Rev Genet 2004;5:101
[101] Van Driessche N, et al. Epistasis analysis with global transcrip-
tional phenotypes. Nat Genet 2005;37:471
13.
[82] Zinman GE, Zhong S, Bar-Joseph Z. Biological interaction
networks are conserved at the module level. BMC Syst Biol
2011;5:134.
[83] Kapitzky L, et al. Cross-species chemogenomic profiling reveals
evolutionarily conserved drug mode of action. Mol Syst Biol
2010;6:451.
[84] Ben-Aroya S, et al. Toward a comprehensive temperature-sensi-
tive mutant repository of the essential genes of Saccharomyces
cerevisiae. Mol Cell 2008;30:248 e 58.
[85] Mnaimneh S, et al. Exploration of essential gene functions via
titratable promoter alleles. Cell 2004;118:31 e 44.
[86] Li Z, et al. Systematic exploration of essential yeast gene function
with temperature-sensitive mutants. Nat Biotechnol 2011;
29(4):361 e 7.
[87] Schuldiner M, et al. Exploration of the function and organization
of the yeast early secretory pathway through an epistatic mini-
array profile. Cell 2005;123:507 e 19.
[88] Pena-Castillo L, Hughes TR. Why are there still over 1000
uncharacterized yeast genes? Genetics 2007;176:7 e 14.
[89] Stevenson BJ, Rhodes N, Errede B, Sprague GF. Constitutive
mutants of the protein kinase STE11 activate the yeast pheromone
response pathway in the absence of the G protein. Gene Dev
1992;6:1293
7.
[102] Burston HE, et al. Regulators of yeast endocytosis identified by
systematic quantitative analysis. J Cell Biol 2009;185:1097
e
e
110.
[103] Jonikas MC, et al. Comprehensive characterization of genes
required for protein folding in the endoplasmic reticulum. Science
2009;323:1693 e 7.
[104] Fillingham J, et al. Two-color cell array screen reveals inter-
dependent roles for histone chaperones and a chromatin
boundary regulator in histone gene repression. Mol Cell 2009;
35:340 e 51.
[105] Costanzo M, et al. CDK activity antagonizes Whi5, an inhibitor of
G1/S transcription in yeast. Cell 2004;117:899 e 913.
[106] Vizeacoumar FJ, Chong Y, Boone C, Andrews BJ. A picture is
worth a thousand words: genomics to phenomics in the yeast
Saccharomyces cerevisiae. FEBS Lett 2009;583:1656 e 61.
[107] Huh WK, et al. Global analysis of protein localization in budding
yeast. Nature 2003;425:686 e 91.
[108] Moffat J, et al. A lentiviral RNAi library for human and mouse
genes applied to an arrayed viral high-content screen. Cell 2006;
124:1283 e 98.
[109] Vizeacoumar FJ, et al. Integrating high-throughput genetic inter-
action mapping and high-content screening to explore yeast
spindle morphogenesis. J Cell Biol 2010;188:69
e
81.
[110] Lander ES. Initial impact of the sequencing of the human genome.
Nature 2011;470:187
e
304.
e
[90]
Jones GM, et al. A systematic library for comprehensive over-
expression screens in Saccharomyces cerevisiae. Nat Methods
2008;5:239
97.
[111] Manolio TA. Cohort studies and the genetics of complex disease.
Nat. Genet. 2009;41:5 e 6.
[112] Dowell RD, et al. Genotype to phenotype: a complex problem.
Science 2010;328:469.
[113] Hahn LW, Ritchie MD, Moore JH. Multifactor dimensionality
reduction software for detecting gene e gene and gene e environ-
ment interactions. Bioinformatics 2003;19:376 e 82.
[114] Bush WS, Dudek SM, Ritchie MD. Parallel multifactor
dimensionality reduction: a tool for the large-scale analysis of
gene e gene interactions. Bioinformatics 2006;22:2173 e 4.
[115] Steffens M, et al. Feasible and successful: genome-wide interac-
tion analysis involving all 1.9 x 10(11) pair-wise interaction tests.
Hum Hered 2010;69:268 e 84.
[116] Evans DM, Marchini J, Morris AP, Cardon LR. Two-stage two-locus
models in genome-wide association. PLoS Genet 2006;2:e157.
[117] Ritchie MD. Using biological knowledge to uncover the mystery
in the search for epistasis in genome-wide association studies.
Ann Hum Genet 2011;75:172 e 82.
[118] Hannum G, et al. Genome-wide association data reveal a global
map of genetic interactions among protein complexes. PLoS
Genet 2009;5:e1000782.
[119] Baryshnikova A, et al. Synthetic genetic array (SGA) analysis in
Saccharomyces cerevisiae and Schizosaccharomyces pombe.
Methods Enzymol 2010;470:146
e
41.
[91] Ho CH, et al. A molecular barcoded yeast ORF library enables
mode-of-action analysis of bioactive compounds. Nat Biotechnol
2009;27:369 e 77.
[92] Magtanong L, et al. Dosage suppression genetic interaction
networks enhance functional wiring diagrams of the cell. Nat
Biotechnol 2011;29:505.
[93] Gelperin DM, et al. Biochemical and genetic analysis of the yeast
proteome with
e
a movable ORF collection. Gene Dev
2005;19:2816 e 26.
[94] Hu Y, et al. Approaching a complete repository of sequence-
verified protein-encoding clones for Saccharomyces cerevisiae.
Genome Res 2007;17:536 e 43.
[95] Zhu H, et al. Global analysis of protein activities using proteome
chips. Science 2001;293:2101 e 5.
[96] Sopko R, et al. Mapping pathways and phenotypes by systematic
gene overexpression. Mol Cell 2006;21:319.
[97] Sharifpoor S, et al. Functional wiring of the yeast kinome revealed
by global analysis of genetic network motifs. Genome Res
2012;22:791 e 801.
[98] Hillenmeyer ME, et al. The chemical genomic portrait of yeast:
uncovering a phenotype for all genes. Science 2008;320:362
5.
[99] Bandyopadhyay S, et al. Rewiring of genetic networks in response
to DNA damage. Science 2010;330:1385
e
80.
[120] Dixon SJ, Costanzo M, Baryshnikova A, Andrews B, Boone C.
Systematic mapping of genetic interaction networks. Annu Rev
Genet 2009;43:601
e
9.
[100] Ohya Y, et al. High-dimensional and large-scale phenotyping of
yeast mutants. PNAS 2005;102:19015.
e
25.
e
Search WWH ::




Custom Search