Biomedical Engineering Reference
In-Depth Information
5. R. Patnaik, R. G. Spitzer, and J. C. Liao, Pathway engineering for production of aromatics
in Escherichia coli : confirmation of stoichiometric analysis by independent modulation of
aroG, tktA, and pps activities, Biotechnol. Bioeng. , 46, 361-370 (1995).
6. J. C. Liao, S. Hou, andY. Chao, Pathway analysis, engineering and physiological consid-
erations for redirecting central metabolism, Biotechnol. Bioeng. , 52, 129-140 (1996).
7. J. Lu and J. C. Liao,Metabolic engineering and control analysis for production of aromatics:
role of transaldolase, Biotechnol. Bioeng. , 53, 132-138 (1997).
8. G. Gosset, J. Yong-Xiao, and A. Berry, A direct comparison of approaches for increasing
carbon flow to aromatic biosynthesis in Escherichia coli , J. Ind. Microbiol. , 17 (1), 47-52
(1996).
9. N. Flores, J. Xiao,A. Berry, F. Bolivar, and F.Valle, Pathway engineering for the production
of aromatic compounds in Escherichia coli , Nat. Biotechnol. , 14 (5), 620-623 (1996).
10. A. Berry, Improving production of aromatic compounds in Escherichia coli by metabolic
engineering, Trends Biotechnol , 14 (7), 250-256 (1996).
11. M. Emmerling, J. E. Bailey, and U. Sauer, Glucose catabolism of Escherichia coli strains
with increased activity and altered regulation of key glycolytic enzymes, Metab. Eng. ,
1 (2), 117-127 (1999).
12. M. Rizzi, M. Baltes, U. Theobald, and M. Reuss, In vivo analysis of metabolic dynamics
in Saccharomyces cerevisiae . II. Mathematical model, Biotechnol. Bioeng. , 55, 592-608
(1997).
13. B. M. Bakker, P. A. M. Michels, F. R. Oppperdoes, and H. V. Westterhoff, Glycolysis in
bloodstream from trypanosoma brucei can be understood in terms of the kinetics of the
glycolytic enzymes, J. Biol. Chem. , 272, 3207-3215 (1997).
14. P. J. Mulquiney and P. W. Kuchel, Model of 2,3-bisphosphoglycerate metabolism in the
human erythrocyte based on detailed enzyme kinetic equations: equations and parameter
refinement, Biochem. J. , 342, 581-596 (1999).
15. J. C. Torres, V. Guixe, and J. Babul, A mutant phosphofructokinase produces a futile cycle
during gluconeogenesis in Escherichia coli , Biochem. J. , 327, 675-684 (1997).
16. R. Schuster and H. G. Holzhütter, Use of mathematical models for predicting the metabolic
effect of large-scale enzyme activity alterations: application to enzyme deficiencies of red
blood cells, Eur. J. Biochem. , 229, 403-418 (1995).
17. T.-C. Ni and M. A. Savageau, Model assessment and refinement using strategies from
biochemical systems theory: application to metabolism in human red blood cells, J. Theor.
Biol. , 179, 329-368 (1996).
18. U. Schaefer, W. Boos, R. Takors, and D. Weuster-Botz, Automated sampling device for
monitoring intracellular metabolite dynamics, Anal. Biochem. , 270, 88-96 (1999).
19. U. Theobald, W. Mainlinger, M. Reuss, and M. Rizzi, In vivo analysis of glucose-induced
fast changes in yeast adenine nucleotide pool applying a rapid sampling technique, Anal.
Biochem. , 214, 31-37 (1993).
20. U. Theobald, W. Mainlinger, M. Baltes, M. Rizzi, and M. Reuss, In vivo analy-
sis of metabolic dynamics in Saccharomyces cerevisiae . I. Experimental observations,
Biotechnol. Bioeng. , 55, 305-316 (1997).
21. D. Weuster-Botz, Sampling tube device for monitoring intracellular metabolite dynamics,
Anal. Biochem. , 246, 225-233 (1997).
22. H. Kacser and J. A. Burns, The control of flux, Symp. Soc. Exp. Biol. , 27, 65-104 (1973).
Reprinted in Biochem. Soc. Trans. , 23, 341-366 (1995).
Search WWH ::




Custom Search