Civil Engineering Reference
In-Depth Information
Gawin & T. Kisilewicz (eds), 1st Central European Symp. on Building Physics .
Cracow, September 13-15, pp. A7-13.
Baetens, R., Jelle, B. P., & Gustavsen, A. (2011). Aerogel insulation for building
applications: a state-of-the-art review. Energy and Buildings , 43(3), 761-769.
Boltzmann, L. (1884). Ableitung des Stefan'schen Gesetzes, betreffend die Abhän-
gigkeit der Wärmestrahlung von der Temperatur aus der electromagnetischen
Lichttheori.e., Annalen der Physik und Chemie , 22, 291-294.
Brinker, C. J., & Scherer, C. W. (1990). Sol-Gel Science: The Physics and Chemistry
of Sol-Gel Processing . Los Angeles, CA: Academic Press.
Chandrasekhar, S. (1960). Radiative Transfer . New York: Dover Books.
Close, P. D. (1947). Thermal Insulation of Buildings . New York: Reinhold.
Dorchech, A. S., & Abbasi, H. (2008). Silica aerogel: synthesis, properties and char-
acterization. Journal of Materials Processing Technology , 199, 10-26.
Haereid, S., Nilsen, F., & Einarsund, M. A. (1996). Properties of silica aerogel aged
in TEOS. Journal of Non-Crystalline Solids , 204, 228-234.
Hüsing, N., & Schubert, U. (1998). Aerogels - airy materials: chemistry, structure and
properties. Angewandte Chemie International Edition , 37(2), 22-45.
Jelle, B. P. (2011). Traditional, state-of-the-art and future thermal building insulation
materials and solutions - Properties, requirements and possibilities. Energy and
Buildings , 43, 2549-2563.
Jelle, B. P., Gustavsen, A., & Baetens, R. (2010). The path to the high performance
thermal building insulation materials and solutions of tomorrow. Journal of Build-
ing Physics , 34(2), 99-123.
Jester, T. C. (1995). Twentieth Century Building Materials . New York: McGraw-Hill.
Kennard, E. H. (1938). Kinetic Theory of Gases, with an Introduction to Statistical
Mechanics . New York: McGraw-Hill.
Kistler, S. S. (1931). Coherent expanded aerogels and jellies. Nature , 127, 741.
Kistler, S. S. (1932). Coherent expanded aerogels. Journal of Physical Chemistry , 32,
56.
Merget, R., Bauer, T., Küpper, H., Philippou, S., Bauer, H., Breitstadt, R., & Bruen-
ing, T. (2002). Health hazards due to the inhalation of amorphous silica. Archives
of Toxicology , 75, 625-634.
Richter, K. (1995). Aerogels: applications, structure and heat transfer phenomena.
Annual Review on Heat Transfer , 6, 61-114.
Srivastava, G. P. (1990). The Physics of Phonons . New York: Adam Hilger.
Tenpierik, M. J., & Cauberg, H. (2007). Analytical models for calculating thermal
bridge effects caused by thin high barrier envelopes around vacuum insulation
panels. Journal of Building Physics , 30(3), 185-215.
Tenpierik, M. J., van Der Spoel, W., & Cauberg, J. J. M. (2008). Analytical models for
calculating thermal bridge effects in high performance building enclosure. Journal
of Building Physics , 31, 361-388.
Volz, S. (2007). Microscale and Nanoscale Heat Transfer . Berlin: Springer.
Wang, X., Walliman, N., Ogden, R., & Kendrick, C. (2007). VIP and their applications
in buildings: a review. Construction Materials , 160, 145-153.
Warheit, D. (2001). Inhaled amorphous silica particles: what do we know about their
toxicological profi les? Journal of Environmental Toxicology and Oncology , 20,
133-141.
￿ ￿ ￿ ￿ ￿ ￿
Search WWH ::




Custom Search