Civil Engineering Reference
In-Depth Information
Lu, K.; Lu, L.; Suresh, S. (2009), Strengthening materials by engineering coherent
internal boundaries at the nanoscale. Science 324(5925), 349-352.
Lu, K.; Yan, F.K.; Wang, H.T.; Tao, N.R. (2012), Strengthening austenitic steels by
using nanotwinned austenitic grains. Scripta Materialia 66(11), 878-883.
Malow, T.R.; Koch, C.C. (1997), Grain growth in nanocrystalline iron prepared by
mechanical attrition. Acta Materialia 45(5), 2177-2186.
Mann, S. (2006), Nanotechnology and Construction . European Nanotechnology
Gateway - Nanoforum Report, Institute of Nanotechnology, 2-10.
Matsuia, K.; Ohmichi, N.; Ohgai, M.; Yoshida, H.; Ikuhara, Y. (2006), Effect of alu-
mina-doping on grain boundary segregation-induced phase transformation in
yttria-stabilized tetragonal zirconia polycrystal. Journal of Materials Research 21,
2278-2289.
Menapace, C.; Lonardelli, I.; Tait, M.; Molinari, A. (2009), Nanostructured/ultrafi ne
multiphase steel with enhanced ductility obtained by mechanical alloying
and spark plasma sintering of powders. Materials Science and Engineering A 517,
1-7.
Miura, H.; Miyao, N.; Ogawa, H.; Oda, K.; Katsumura, M.; Mizutani, M. (2010),
Nano-crystal austenitic steel bulk material having ultra-hardness and toughness
and excellent corrosion resistance, and method for production thereof. US patent
7,662,207.
Murayama, M.; Nishimura, T.; Tsuzaki, K. (2008), Nano-scale chemical analysis of
rust on a 2% Si-bearing low alloy steel exposed in a coastal environment. Corro-
sion Science 50(8), 2159-2165.
Namavar, F. (2006), Nano-crystalline, homo-metallic, protective coatings. US patent
7,048,767.
Ohtsuka, S.; Ukai, S.; Sakasegawa, H.; Fujiwara, M.; Kaito, T.; Narita, T. (2007) Nano-
mesoscopic structural characterization of 9Cr-ODS martensitic steel for improv-
ing creep strength. Journal of Nuclear Materials 367-370, 160-165.
Okamura, Y.; Okushima, M.; Tamehiro, H.; Kasuya, T.; Tanaka, M.; Yamaba, R.;
Inoue, H.; Seto, A. (1995), Development of copper precipitation-hardened 780 N/
mm 2 high-strengh steel with lower preheating temperature characteristics. Nippon
Steel Technical Report 66(7), 65-76.
Oksiuta, Z.; Lewandowska, M.; Unifantowicz, P.; Baluc, N.; Kurzydlowski, K.J.
(2011), Infl uence of Y 2 O 3 and Fe 2 Y additions on the formation of nano-scale oxide
particles and the mechanical properties of an ODS RAF steel. Fusion Engineering
and Design 86, 2417-2420.
Osman, F.M.; Rardon, D.E.; Friedman, L.B.; Vega, L.F. (2006), The commercializa-
tion of nanomaterials: today and tomorrow. JOM (4), 21-24.
Saji, V.S.; Thomas, J. (2007), Nanomaterials for corrosion control. Current Science
92(1), 51-55.
Shi, X.; Nguyen, T.A.; Suo, Z.; Liu, Y.; Avci, R. (2009), Effect of nanoparticles on the
anticorrosion and mechanical properties of epoxy coating. Surface and Coatings
Technology 204(3), 237-245.
Smith, W.F. (1981), Structure and Properties of Engineering Alloys . McGraw-Hill,
New York.
Sokolov, M.A.; Hoelzer, D.T.; Stoller, R.E.; McClintock, D.A. (2007), Fracture tough-
ness and tensile properties of nano-structured ferritic steel 12YWT. Journal of
Nuclear Materials 367-370, 213-216.
￿ ￿ ￿ ￿ ￿ ￿
Search WWH ::




Custom Search