Biomedical Engineering Reference
In-Depth Information
104 BIBLIOGRAPHY
[38] Redler, I., et al., The ultrastructure and biomechanical significance of the tidemark of articular
cartilage. Clin Orthop Relat Res, 1975(112): p. 357-62.
[39] Radin, E.L. and R.M. Rose, Role of subchondral bone in the initiation and progression of cartilage
damage. Clin Orthop Relat Res, 1986(213): p. 34-40.
[40] Hunziker, E.B., W. Herrmann, and R.K. Schenk, Ruthenium hexammine trichloride (RHT)-
mediated interaction between plasmalemmal components and pericellular matrix proteoglycans is
responsible for the preservation of chondrocytic plasma membranes in situ during cartilage fixation.
J Histochem Cytochem, 1983. 31 (6): p. 717-27.
[41] Poole, C.A., S. Ayad, and J.R. Schofield, Chondrons from articular cartilage: I. Immunolocal-
ization of type VI collagen in the pericellular capsule of isolated canine tibial chondrons. J Cell Sci,
1988. 90 ( Pt 4): p. 635-43.
[42] Youn, I., et al., Zonal variations in the three-dimensional morphology of the chondron mea-
sured in situ using confocal microscopy. Osteoarthritis Cartilage, 2006. 14 (9): p. 889-97.
DOI: 10.1016/j.joca.2006.02.017
[43] Mow, V.C., E.L. Flatow, and G.A. Ateshian, Biomechanics ,in Orthopaedic basic science: Biology
and biomechanics of the musculoskeletal system , J.A. Buckwalter, T.A. Einhorn, and S.R. Simon,
Editors. 2000, American Academy of Orthopaedic Surgeons. p. 140-42.
[44] Hodge, W.A., et al., Contact pressures from an instrumented hip endoprosthesis. J Bone Joint
Surg Am, 1989. 71 (9): p. 1378-86.
[45] Hayes, W.C. and L.F. Mockros, Viscoelastic properties of human articular cartilage. J Appl
Physiol, 1971. 31 (4): p. 562-8.
[46] Mak, A.F., The apparent viscoelastic behavior of articular cartilage-the contributions from the
intrinsic matrix viscoelasticity and interstitial fluid flows. J Biomech Eng, 1986. 108 (2): p. 123-
30. DOI: 10.1115/1.3138591
[47] Setton, L.A., W. Zhu, and V.C. Mow, The biphasic poroviscoelastic behavior of articular cartilage:
role of the surface zone in governing the compressive behavior. J Biomech, 1993. 26 (4-5): p. 581-92.
DOI: 10.1016/0021-9290(93)90019-B
[48] Mow, V.C., M.H. Holmes, and W.M. Lai, Fluid transport and mechanical properties of articular
cartilage: a review. J Biomech, 1984. 17 (5): p. 377-94. DOI: 10.1016/0021-9290(84)90031-9
[49] Schinagl, R.M., et al., Depth-dependent confined compression modulus of full-thickness bovine
articular cartilage. J Orthop Res, 1997. 15 (4): p. 499-506. DOI: 10.1002/jor.1100150404
[50] Athanasiou, K.A., et al., Interspecies comparisons of in situ intrinsic mechanical properties of distal
femoral cartilage. J Orthop Res, 1991. 9 (3): p. 330-40. DOI: 10.1002/jor.1100090304
Search WWH ::




Custom Search