Biomedical Engineering Reference
In-Depth Information
Lees JA, Yip CK, Walz T, Hughson FM (2010) Molecular organization of the COG vesicle
tethering complex. Nat Struct Mol Biol 17:1292-1297
Lehman K, Rossi G, Adamo JE, Brennwald P (1999) Yeast homologues of tomosyn and lethal
giant larvae function in exocytosis and are associated with the plasma membrane SNARE,
Sec9. J Cell Biol 146:125-140
Lewis MJ, Nichols BJ, Prescianotto-Baschong C, Riezman H, Pelham HR (2000) Specific retrieval
of the exocytic SNARE Snc1p from early yeast endosomes. Mol Biol Cell 11:23-38
Liewen H, Meinhold-Heerlein I, Oliveira V, Schwarzenbacher R, Luo G, Wadle A, Jung M,
Pfreundschuh M, Stenner-Liewen F (2005) Characterization of the human GARP (Golgi
associated retrograde protein) complex. Exp Cell Res 306:24-34
Miller VJ, Sharma P, Kudlyk TA, Frost L, Rofe AP, Watson IJ, Duden R, Lowe M, Lupashin VV,
Ungar D (2013) Molecular insights into vesicle tethering at the Golgi by the conserved
oligomeric Golgi (COG) complex and the golgin TATA element modulatory factor (TMF). J
Biol Chem 288:4229-4240
Morgera F, Sallah MR, Dubuke ML, Gandhi P, Brewer DN, Carr CM, Munson M (2012)
Regulation of exocytosis by the exocyst subunit Sec6 and the SM protein Sec1. Mol Biol
Cell 23:337-346
Novick P, Field C, Schekman R (1980) Identification of 23 complementation groups required for
post-translational events in the yeast secretory pathway. Cell 21:205-215
Perez-Victoria FJ, Abascal-Palacios G, Tascon I, Kajava A, Magadan JG, Pioro EP, Bonifacino JS,
Hierro A (2010) Structural basis for the wobbler mouse neurodegenerative disorder caused by
mutation in the Vps54 subunit of
the GARP complex. Proc Natl Acad Sci USA
107:12860-12865
Ren Y, Yip CK, Tripathi A, Huie D, Jeffrey PD, Walz T, Hughson FM (2009) A structure-based
mechanism for vesicle capture by the multisubunit
tethering complex Dsl1. Cell
139:1119-1129
Richardson BC, Smith RD, Ungar D, Nakamura A, Jeffrey PD, Lupashin VV, Hughson FM (2009)
Structural basis for a human glycosylation disorder caused by mutation of the COG4 gene. Proc
Natl Acad Sci USA 106:13329-13334
Rivera-Molina F, Toomre D (2013) Live-cell imaging of exocyst links its spatiotemporal dynam-
ics to various stages of vesicle fusion. J Cell Biol 201:673-680
Salminen A, Novick PJ (1987) A ras-like protein is required for a post-Golgi event in yeast
secretion. Cell 49:527-538
Salminen A, Novick PJ (1989) The Sec15 protein responds to the function of the GTP binding
protein, Sec4, to control vesicular traffic in yeast. J Cell Biol 109:1023-1036
Shen D, Yuan H, Hutagalung A, Verma A, Kummel D, Wu X, Reinisch K, McNew JA, Novick P
(2013) The synaptobrevin homologue Snc2p recruits the exocyst to secretory vesicles by
binding to Sec6p. J Cell Biol 202:509-526
Siniossoglou S, Pelham HR (2002) Vps51p links the VFT complex to the SNARE Tlg1p. J Biol
Chem 277:48318-48324
Sivaram MV, Saporita JA, Furgason ML, Boettcher AJ, Munson M (2005) Dimerization of the
exocyst protein Sec6p and its
interaction with the t-SNARE Sec9p. Biochemistry
44:6302-6311
Sivaram MV, Furgason ML, Brewer DN, Munson M (2006) The structure of the exocyst subunit
Sec6p defines a conserved architecture with diverse roles. Nat Struct Mol Biol 13:555-556
Suvorova ES, Duden R, Lupashin VV (2002) The Sec34/Sec35p complex, a Ypt1p effector
required for retrograde intra-Golgi trafficking, interacts with Golgi SNAREs and COPI vesicle
coat proteins. J Cell Biol 157:631-643
TerBush DR, Novick P (1995) Sec6, Sec8, and Sec15 are components of a multisubunit complex
which localizes to small bud tips in Saccharomyces cerevisiae. J Cell Biol 130:299-312
TerBush DR, Maurice T, Roth D, Novick P (1996) The exocyst is a multiprotein complex required
for exocytosis in Saccharomyces cerevisiae. EMBO J 15:6483-6494
Search WWH ::




Custom Search