Biomedical Engineering Reference
In-Depth Information
Lee BJ, Cansizoglu AE, Suel KE, Louis TH, Zhang Z, Chook YM (2006) Rules for nuclear
localization sequence recognition by karyopherin
2. Cell 126:543-558
Lim RY, Huang NP, Koser J, Deng J, Lau KH, Schwarz-Herion K, Fahrenkrog B, Aebi U (2006)
Flexible phenylalanine-glycine nucleoporins as entropic barriers to nucleocytoplasmic trans-
port. Proc Natl Acad Sci USA 103:9512-9517
Liu SM, Stewart M (2005) Structural basis for the high-affinity binding of nucleoporin Nup1p to
the Saccharomyces cerevisiae importin-
β
homologue, Kap95p. J Mol Biol 349:515-525
Lund E, G¨ ttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA
precursors. Science 303:95-98
Mahajan R, Delphin C, Guan T, Gerace L, Melchior F (1997) A small ubiquitin-related polypep-
tide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88:97-107
Matsuura Y, Stewart M (2004) Structural basis for the assembly of a nuclear export complex.
Nature 432:872-877
Matsuura Y, Stewart M (2005) Nup50/Npap60 function in nuclear protein import complex
disassembly and importin recycling. EMBO J 24:3681-3689
Matsuura Y, Lange A, Harreman MT, Corbett AH, Stewart M (2003) Structural basis for Nup2p
function in cargo release and karyopherin recycling in nuclear import. EMBO J 22:5358-5369
Matunis MJ, Coutavas E, Blobel G (1996) A novel ubiquitin-like modification modulates the
partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the
nuclear pore complex. J Cell Biol 135:1457-1470
Matunis MJ, Wu J, Blobel G (1998) SUMO-1 modification and its role in targeting the Ran
GTPase-activating protein, RanGAP1, to the nuclear pore complex. J Cell Biol 140:499-509
Maxwell JC (1872) The theory of heat. Longmans, London
Monecke T, G¨ ttler T, Neumann P, Dickmanns A, G¨rlich D, Ficner R (2009) Crystal structure of
the nuclear export receptor CRM1 in complex with Snurportin1 and RanGTP. Science
324:1087-1091
Nilsson J, Weis K, Kjems J (2002) The C-terminal extension of the small GTPase Ran is essential
for defining the GDP-bound form. J Mol Biol 318:583-593
Ohtsubo M, Okazaki H, Nishimoto T (1989) The RCC1 protein, a regulator of the onset of
chromosome condensation locates in the nucleus and binds to DNA. J Cell Biol 109:1389-
1397
Okada C, Yamashita E, Lee SJ, Shibata S, Katahira J, Nakagawa A, Yoneda Y, Tsukihara T (2009)
A high-resolution structure of
β
the pre-microRNA nuclear export machinery. Science
326:1275-1279
Oki M, Nishimoto T (1998) Yrb1p interaction with the gsp1p C terminus blocks Mog1p stimu-
lation of GTP release from Gsp1p. Proc Natl Acad Sci USA 95:15388-15393
Partridge JR, Schwartz TU (2009) Crystallographic and biochemical analysis of the Ran-binding
zinc finger domain. J Mol Biol 391:375-389
Paschal BM, Gerace L (1995) Identification of NTF2, a cytosolic factor for nuclear import that
interacts with nuclear pore complex protein p62. J Cell Biol 129:925-937
Paschal BM, Fritze C, Guan T, Gerace L (1997) High levels of the GTPase Ran/TC4 relieve the
requirement for nuclear protein transport factor 2. J Biol Chem 272:21534-21539
Quimby BB, Leung SW, Bayliss R, Harreman MT, Thirumala G, Stewart M, Corbett AH (2001)
Functional analysis of the hydrophobic patch on nuclear transport factor 2 involved in
interactions with the nuclear pore in vivo . J Biol Chem 276:38820-38829
Renault L, Nassar N, Vetter I, Becker J, Klebe C, Roth M, Wittinghofer A (1998) The 1.7
crystal
structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed pro-
peller. Nature 392:97-101
Renault L, Kuhlmann J, Henkel A, Wittinghofer A (2001) Structural basis for guanine nucleotide
exchange on ran by the regulator of chromosome condensation (RCC1). Cell 105:245-255
Ribbeck K, G¨rlich D (2001) Kinetic analysis of translocation through nuclear pore complexes.
EMBO J 20:1320-1330
Å
Search WWH ::




Custom Search