Environmental Engineering Reference
In-Depth Information
ITRC. 2005. Permeable Reactive Barriers: Lessons Learned/New Directions. Interstate
Technology & Regulatory Council. Washington, DC: Interstate Technology &
Regulatory Council, Permeable Reactive Barriers Team. Available on the Internet
at www. itrcweb. org.
ITRC. 2011. Permeable Reactive Barrier: Technology Update. The Interstate
Technology & Regulatory Council PRB: Technology Update Team. Washington,
DC. http://www. itrcweb. org/Guidance/GetDocument? documentID=69.
Johnson, D.B., and K.B. Hallberg. 2005. Acid mine drainage remediation options: A
review. Science of the Total Environment , 338(1):3-14.
Johnson, T.L., M.M. Scherer, and P.G. Tratnyek. 1996. Kinetics of halogenated organic
compound degradation by iron metal. Environmental Science & Technology ,
30(8):2634-2640.
Lai, K.C.K., I.M.C. Lo, and R. Surampalli. 2006. Configuration and construction
of zero-valent iron reactive barriers. In Zero-Valent Iron Reactive Materials for
Hazardous Waste and Inorganics Removal . American Society of Civil Engineers:
Virginia, pp. 224-242.
Meggyes, T. 2005. Construction methods of permeable reactive barriers. Long-Term
Performance of Permeable Reactive Barriers . Elsevier, Amsterdam, pp. 27-52.
Naidu, R. 2013. Recent advances in contaminated site remediation. Water, Air, & Soil
Pollution , 224(12):1-11.
O'Hannesin, S.F., and R.W. Gillham. 1998. Long-term performance of an in situ “Iron
Wall” for Remediation of VOCs. Ground Water , 36(1):164-170.
Phillips, D.H., T. Van Nooten, L. Bastiaens, M.I. Russell, K. Dickson, S. Plant, J.M.E.
Ahad, T. Newton, T. Elliot, and R.M. Kalin. 2010. Ten year performance evalu-
ation of a field-scale zero-valent iron permeable reactive barrier installed to
remediate trichloroethene contaminated groundwater. Environmental Science &
Technology , 44(10):3861-3869.
Powell, R.M., and R.W. Puls. 1997. Proton generation by dissolution of intrinsic or
augmented aluminosilicate minerals for in situ contaminant remediation by
zero-valence-state iron. Environmental Science & Technology , 31(8):2244-2251.
Richardson, J.P., and J.W. Nicklow. 2002. In situ permeable reactive barriers for
groundwater contamination. Soil and Sediment Contamination: An International
Journal , 11(2):241-268.
Roehl, K.E., T. Meggyes, F.G. Simon, and D.I. Stewart. 2005. Long-term Performance of
Permeable Reactive Barriers . Vol. 7: Access Online via Elsevier.
RTDF. 2001. Permeable Reactive Barrier Installation Profile. Permeable Reactive
Barriers Action Team. Remediation Technologies Development Forum, Date
accessed March 2014. http:/ / www. rtdf. org/ public/ permbarr/ PRBSUMMS/.
Starr, R.C., and J.A. Cherry. 1994. In situ remediation of contaminated ground water:
The funnel-and-gate system. Ground Water , 32(3):465-476.
Thangavadivel, K., W.H. Wang, V. Birke, and R. Naidu. 2013. A comparative study of
trichloroethylene (TCE) degradation in contaminated groundwater (GW) and
TCE-spiked deionised water using zero valent iron (ZVI) under various mass
transport conditions. Water, Air, & Soil Pollution , 224(12):1-9.
Thiruvenkatachari, R., S. Vigneswaran, and R. Naidu. 2008. Permeable reactive bar-
rier for groundwater remediation. Journal of Industrial and Engineering Chemistry ,
14(2):145-156.
Search WWH ::




Custom Search