Chemistry Reference
In-Depth Information
[78] Beil, W.; Bierbaum, S.; Sewing, K. F., Studies on the mechanism of action
of colloidal bismuth subcitrate I. Interaction with sulfhydryls.
Pharmacology 1993, 47, 135-140.
[79] Mahony, D. E.; Lim-Morrison, S.; Bryden, L.; Faulkner, G.; Hoffman, P. S.;
Agocs, L.; Briand, G. G.; Burford, N.; Maguire, H., Antimicrobial activities
of synthetic bismuth compounds against Clostridium difficile . Antimicrobial
Agents and Chemotherapy 1999, 43, (3), 582-588.
[80] Stratton, C. W.; Warner, R. R.; Coudron, P. E.; Lilly, N. A., Bismuth-
mediated disruption of the glycocalyx-cell wall of Helicobacter pylori :
ultrastructural evidence for a mechanism of action for bismuth salts. Journal
of Antimicrobial Chemotherapy 1999, 43, 659-666.
[81] Climo, M. W.; Pastor, A.; Wong, E. S., An outbreak of Pseudomonas
aeruginosa related to contaminated urodynamic equipment. Infection
Control and Hospital Epidemiology 1997, 18, (7), 509-510.
[82] Mena, K. D.; Gerba, C. P., Risk Assessment of Pseudomonas aeruginosa in
water. Reviews of Environmental Contamination and Toxicology 2009,
201, 71-115.
[83] Dankovich, T. A.; Gray, D. G., Bactericidal paper impregnated with silver
nanoparticles for point-of-use water treatment. Environmental Science &
Technology 2011, 45, 1992-1998.
[84] De Beer, D.; Srinivasan, R.; Stewart, P. S., Direct measurement of chlorine
penetration into biofilms during disinfection. Appl. Environ. Microbiol.
1994, 60, 4339-4344.
[85] Xu, X.; Stewart, P. S.; Chen, X., Transport limitation of chlorine
disinfection of Pseudomonas aeruginosa entrapped in alginate beads.
Biotechnology and Bioengineering 1996, 49, (93-100).
[86] Hernandez-Delgadillo, R.; Velasco-Arias, D.; Diaz, D.; Arevalo-NiƱo, K.;
Garza-Enriquez, M.; De la Garza-Ramos, M. A.; Cabral-Romero, C.,
Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and
formation of biofilm. International Journal of Nanomedicine 2012, 7,
2109-2113.
Search WWH ::




Custom Search