Information Technology Reference
In-Depth Information
Equations :
(P1)
P p
P
=
P
(P2)
P p
Q
=
Q 1 p
P
(P3)
(
P p
Q
) q
R
=
P p · q (
Q ( 1 p ) · q
1
R
)
p
·
q
(I1)
P P
=
P
(I2)
P Q
=
Q P
(I3)
(
P Q
)
R
=
P
(
Q R
)
(E1)
P
=
P
0
(E2)
P Q
=
Q P
(E3)
(
P Q
)
R
=
P
(
Q R
)
(EI)
a
P
a
Q
=
a
P a
Q
.
.
.
.
(D1)
P
(
Q p
R
)=(
P Q
) p (
P
R
)
(D2)
a
P
(
Q R
)=(
a
P Q
)
(
a
P
R
)
.
.
.
(D3)
(
P 1
P 2
)
(
Q 1 Q 2
)=(
P 1
(
Q 1 Q 2
))
(
P 2
(
Q 1 Q 2
))
((
P 1
P 2 )
Q 1 )
((
P 1
P 2 )
Q 2 )
May :
(May0)
a
P
b
Q
=
a
P b
Q
.
.
.
.
(May1)
P
P Q
(May2)
0
P
(May3)
a
. (
P p
Q
)
a
P p
a
Q
.
.
Must :
(Must1)
P Q
Q
(Must2)
R
p j
· (
a i
Q ij P ij
)
I a i
J i p j
·
Q ij
.
.
,
i
j
I j
J i
i
provided inits
(
R
)
{ a i
}
i
I
Fig. 5.8 Equations and inequations. (©[2007] IEEE. Reprinted, with permission, from [ 16 ])
The axiom ( Must2 ) can equivalently be formulated as follows:
a i .
j J i
a k .R k
p j ·
( a i .Q ij
P ij )
p j ·
Q ij ,
k K
L k
i I
j J i
i I
{ a k | k K , K k }ↆ{ a i | i I } .
This is the case because a term R satisfies inits ( R )
provided
ↆ{
a i } i I iff it can be converted
into the form
k K
a k .R k by means of axioms ( D1 ), ( P1 )-( P3 ) and ( E1 )-( E3 )
L k
of Fig. 5.8 . This axiom can also be reformulated in an equivalent but more semantic
style:
( Must2 )
R
i I P i
i I a i .Q i ,
a i
−ₒ
X
−ₒ
provided [[ P i ]]
[[ Q i ]]
and [[ R ]]
with X
=
Act
\{
a i } i I .
a
−ₒ
This is the case because [[ P ]]
[[ Q ]] iff, up to the axioms in Fig. 5.8 , P has the
form j J p j ·
P j ) and Q has the form j J p j ·
( a.Q j
Q j for certain P j , Q j
and p j , for j J .
Search WWH ::




Custom Search