Database Reference
In-Depth Information
Giannotti, F., Pedreschi, D., Turini, F.: Mobility, Data Mining and Privacy the Experience
of the GeoPKDD Project. In: Bonchi, F., Ferrari, E., Jiang, W., Malin, B. (eds.)
PinKDD 2008. LNCS, vol. 5456, pp. 25-32. Springer, Heidelberg (2009)
Hay, M., Miklau, G., et al.: Resisting structural re-identification in anonymized social net-
works. Proc. VLDB Endow. 1(1), 102-114 (2008)
Kargupta, H., Datta, S., et al.: On the privacy preserving properties of random data pertur-
bation techniques. In: Third IEEE International Conference on Data Mining, ICDM
2003, pp. 99-106 (2003)
Muralidhar, K., Sarathy, R.: Transactions on Data Privacy 1(1), 17-33 (2008)
Kun, L., Kargupta, H., et al.: Random projection-based multiplicative data perturbation for
privacy preserving distributed data mining. IEEE Transactions on Knowledge and Data
Engineering 18(1), 92-106 (2006)
Li, N., Li, T.: t-Closeness: Privacy Beyond k-Anonymity and ℓ-Diversity. In: Proceedings
of IEEE International Conference on Data Engineering (2007)
Lindell, Y., Pinkas, B.: Secure Multiparty Computation for Privacy-Preserving Data Min-
ing. Journal of Privacy and Confidentiality 1(1), 59-98 (2009)
Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: Proceedings of the 2008
ACM SIGMOD International Conference on Management of Data, Vancouver. ACM
Loukides, G., Gkoulalas-Divanis, A., Shao, J.: Anonymizing Transaction Data to Eliminate
Sensitive Inferences. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.) DEXA
2010. LNCS, vol. 6261, pp. 400-415. Springer, Heidelberg (2010)
Martin, D.J., Kifer, D., et al.: Worst-Case Background Knowledge for Privacy-Preserving
Data Publishing. In: IEEE 23rd International Conference on Data Engineering, ICDE
2007 (2007)
Mohammed, N., Fung, B.C.M., et al.: Anonymizing healthcare data: a case study on the
blood transfusion service. In: Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Paris, France. ACM (2009)
Moor, J.: Towards a theory of privacy in the information age. In: Bynum, T., Rodgerson, S.
(eds.) Computer Ethics and Professional Responsibility. Blackwell Publishing (2004)
Nin, J., Herranz, J., et al.: Rethinking rank swapping to decrease disclosure risk. Data
Knowl. Eng. 64(1), 346-364 (2008)
Oliveira, S.R.M., Zaïane, O.R., Saygın, Y.: Secure Association Rule Sharing. In: Dai, H.,
Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 74-85.
Springer, Heidelberg (2004)
Paillier, P.: The 26th International Conference on Privacy and Personal Data Protection. In:
Advances in Cryptography - EUROCRYPT 1999, pp. 23-38 (1999)
Sweeney, L.: Datafly: A System for Providing Anonymity in Medical Data. In: Proceedings
of the IFIP TC11 WG11.3 Eleventh International Conference on Database Securty XI:
Status and Prospects, pp. 356-381 (1998)
Sweeney, L.: Computational Disclosure Control: A Primer on Data Privacy Protection,
Ph.D. thesis. Massachusetts Institute of Technology (2001)
Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness
Knowl.-Based Syst. 10(5), 557-570 (2002)
Vaidya, J., Clifton, C.: Privacy-preserving k-means clustering over vertically partitioned
data. In: Proceedings of the Ninth ACM SIGKDD International Conference on Know-
ledge Discovery and Data Mining, Washington, D.C., ACM (2003)
Vaidya, J., Clifton, C., et al.: Privacy-preserving decision trees over vertically partitioned
data. ACM Trans. Knowl. Discov. Data 2(3), 1-27 (2008)
Search WWH ::

Custom Search