Environmental Engineering Reference
In-Depth Information
C:Cost ($1000):
Implementation Failure
Design OK
20-0.4 x *
0
P ( X x *)
x *
E ( C | x *) = 20-0.4 x *
+ P ( X < x *)×100
Design fails
x *: Design
strength
20-0.4 x *
100
P ( X < x *)
0.06
μ X ~ N (μ′ μ ,σ′ μ )
0.05
Prior total
distribution of X
X X ~ N (μ′ X ,σ′ X )
0.04
X ~ N (μ′ T X ,σ′ T X )
0.03
μ′ T X = μ′ μ
0.02
σ′ T X = ÷ ææææ
σ X 2 +σ′ μ 2
0.01
0.00
0
20
40
60
80
100
X, μ X (kPa)
Figure 13.22 Prior decision tree to select design shear strength for compacted fill.
Taking the derivative of EC ( ∗ with respect to x * and setting it equal to zero to find the
minimum produces the following result for the optimal value of x *:
100
204
2
x Opt
=− +
µ
(
σ
2
σ
′2
)
×
ln
ln(
σσ
2
+
′2
)
(13.21)
X
X
π
×
.
2
µ
µ
µ
The minimum cost that corresponds to the optimal x * is given by
100
204
2
EC
()
=
ECx
(
|
)
= −× +
(
20
04
.
x
)
100
×
Φ
ln
ln(σσ µ
2
+
2
Min
Opt
Opt
π
×
.
2
(13.22)
For example, the optimum value for x * is shown in Figure 13.23 .
The posterior decision tree to select the design strength for the compacted fill based on
QA/QC test results is shown in Figure 13.24 . Since this case with a normal prior distribution
for an uncertain mean value and a likelihood function corresponding to random sampling
from a normal distribution constitutes a conjugate pair ( Table 13.1 ), the posterior distribu-
tion is also normal with the following parameters:
µσ
(
2
/
nx
n
)
+
+
()
σ
′2
µ
X
µ
µ
=
(13.23)
µ
(
σ
2
/
)
()
σ
′2
X
µ
 
 
Search WWH ::




Custom Search