Biomedical Engineering Reference
In-Depth Information
Conclusions
Two industrial wastes (brewery and meat processing wastes) and an agro-industrial
residue (sugar cane bagasse) showed a great potential as substrates and support material,
respectively for TAA production by A. oryzae FQB-01 at low production costs. In addition,
the organic load of the two wastes is substantially reduced at the end of the fermentations.
Increased TAA productions (107 and 113 EU/mL) were respectively obtained in the
MPW and BW media supplemented with 30 g of starch/L of medium. A further increase in
the initial starch concentration in the medium (40 g of starch/L) did not improve significantly
TAA production in both media (111 and 116 EU/mL, respectively).
The maximum TAA concentration (539 EU/gds) in SSF was achieved with optimized
process parameters such as particle size of bagasse (in the range of 5-10 mm), fermentation
temperature (32.5ºC), pH (5.9), moisture content of bagasse (75%), starch concentration (70.5
mg/gds) and inoculum size (1.4 × 10 7 spores/gds).
However, other studies based on the use of carbon sources from agro-industrial residues
(wheat bran, rice bran, rice husk, maize bran, etc) for TAA production are necessary to
continue optimizing the production of the enzyme in submerged and solid state fermentations.
References
Aidoo, K. E.; Hendry, R. & Wood, B. J. B. (1981). Estimation of fungal growth in a solid
state fermentation system Eur. J. Appl. Microbiol. Biotechnol ., 12 , 6-9.
Balkan, B. & Ertan, F. (2007). Production of α-amylase from P. chrysogenum. Food Technol.
Biotechnol. , 45 , 439-442.
Barrios-González, J.; González, H. & Mejía, A. (1993). Effect of size particle, packing
density and agitation on penicillin production in solid state fermentation. Biotechnol.
Adv ., 11 , 539-547.
Baysal, Z.; Uyar, F. & Aytekin, C. (2003). Solid state fermentation for production of α-
amylase by a thermotolerant Bacillus subtilis from hot-spring water, Process Biochem. ,
38 , 1665-1668.
Bernfeld, P. (1951). Enzymes of starch degradation and synthesis. Adv. Enzymol. , 12 , 397-
427.
Box, G. E. P.; Hunter, W. G. & Hunter, J. S. (1989). In Reverte, S.A. (Publ.), Estadística
para investigadores (pp. 317-361), Barcelona, España.
Cannel, E. & M. Moo-Young. (1980). Solid state fermentation system. Process Biochem ., 15 ,
2-7.
Doran, J. B.; Aldrich, H. C. & Ingram, L. O. (1994). Saccharification and fermentation of
sugarcane bagasse. Biotechnol. Bioeng., 44 , 240-247.
Ellaiah, P.; Adinarayana, K.; Bhavani, Y.; Padmaja, P. & Srinivasulu, B. (2002).
Optimization of process parameters for glucoamylase production under solid state
fermentation by a new isolated Aspergillus species. Process Biochem. , 38 , 615-620.
Feniksova, R. V.; Tikhomirova, A. S. & Rakhleeva, E. E. (1960). Conditions for forming
amylase and proteinase in surface cultures of Bacillus subtilis . Microbiol., 29 , 745-748.
Francis, F.; Sabu, A.; Nampoothiri, K. M.; Ramachandran, S.; Ghosh, S.; Szakacs, G. &
Pandey, A. (2003). Use of response surface methodology for optimizing process
Search WWH ::




Custom Search