Biomedical Engineering Reference
In-Depth Information
[49]
Senez, J. C. (1962) Some considerations on the energetic of bacterial growth.
Microbiol Mol Biol Rev 26 (212), 95-107.
[50]
Ye, F.X., Shen, D.S. and Li, Y. (2003) Reduction in excess sludge production by
addition of chemical uncouplers in activated sludge batch cultures. J Appl Microbiol
95 (4), 781-786.
[51]
Russel, J. B. and Cook, G. M. (1995) Energetics of bacterial growth: balance of
anabolic and catabolic reactions. Microbiol Mol Biol Rev 59 (1), 48-62.
[52]
Spycher, S., Escher, B.I. and Gasteiger, J. (2005) A quantitative structure-activity
relationship model for the intrinsic activity of uncouplers of oxidative phosphorylation.
Chem Res Toxicol 18 (12), 1858-1867.
[53]
Menendez, R.G. (1996) An electromagnetic coupling hypothesis to explain the proton
translocation mechanism in mitochondria, bacteria and chloroplasts. Med Hypotheses
47 (3), 179-182.
[54]
Hatase, O., Yamamoto, G. and Oda, T. (1969) The competitive effect of adenosine-5'-
triphosphate against the stimulating and inhibiting actions of 2, 4-dinitrophenol on the
mitochondrial respiration. Acta Medica Okayama 23 (3), 227-235.
[55]
Rosado, J.A. (2006) Discovering the mechanism of capacitative calcium entry. Am J
Physiol Cell Physiol 291 (6), 1104-1106.
[56]
Mitchell, P. (1961) Coupling of phosphorylation to electron and hydrogen transfer by a
chemiosmotic type of mechanism. Nature 191 , 144-148.
[57]
Decker, S.J. and Lang, D.R. (1978) Membrane bioenergetic parameters in uncoupler-
resistant mutants of bacillus megaterium. J biol chem 253 (19), 6738-6743.
[58]
Brandt, U., Schubert, J., Geck, P. and Vonjagow, G. (1992) Uncoupling activity and
physicochemical properties of derivatives of fluazinam. Biochim Biophys Acta
1101 (1), 41-47.
[59]
Russell, J.B. (2007) The energy spilling reactions of bacteria and other organisms. J
Mol Microbiol Biotechnol 13 (1-3), 1-11.
[60]
Liu, Y. (1996) Bioenergetic interpretation on the S 0 /X 0 ratio in substrate-sufficient
batch culture. Water Res 30 (11), 2766-2770.
[61]
de Mattos, M.J. and Neijssel, O.M. (1997) Bioenergetic consequences of microbial
adaptation to low-nutrient environments. J Biotechnol 59 (1-2), 117-126.
[62]
Tempest, D.W. and Niejssel, O.M. (2006) Physiological and energetic aspects of
bacterial metabolite overproduction. FEMS Microbiol Lett 100 (1-3), 169-176.
[63]
Elberse, I.A.M.,Vanhala, T.K., Turin, J.H.B.,Stam, P., van Damme, J.M.M. and van
Tienderen, P.H. (2004) Quantitative trait loci affecting growth-related traits in wild
barley (Hordeum spontaneum) grown under different levels of nutrient supply.
Heredity 93 , 22-33.
[64]
Zakharov, S.D. and Kuzmina, V.P. (1992) ATP-synthase activity of the thermophilic
bacterium Thermus Thermophilus HB-8 membranes. Biochemistry-Moscow 57 (4),
365-371.
[65]
http://themedicalbiochemistrypage.org/oxidative-phosphorylation.html
[66]
http://en.wikipedia.org/wiki/Oxidative_phosphorylation
[67]
Kim, H., Esser, L., Hossain, M.B., Xia, D., Yu, C.A., Rizo, J., van der Helm, D. and
Deisenhofer, J. (1999) Structure of Antimycin A1, a Specific Electron Transfer
Inhibitor of Ubiquinol-Cytochrome c Oxidoreductase. J Am Chem Soc 121 (20), 4902-
4903.
Search WWH ::




Custom Search