Chemistry Reference
In-Depth Information
D-band Raman intensity of graphitic materials as a function of laser energy
and crystallite size. Chem. Phys. Lett. , 427:117, 2006.
36. W. Ren, R. Saito, L. Gao, F. Zheng, B. Liu, Z. Wu, M. Furukawa, J. Zhao,
Z. Chen, and H. M. Cheng. Edge phonon state of graphene nanoribbons
observed by raman spectroscopy. Phys. Rev. B , 81:035412, 2010.
37. A. Gruneis, J. Serrano, A. Bosak, M. Lazzeri, S. L. Molodtsov, C. Attaccalite,
L. Wirtz, M. Krisch, A. Rubio, F. Mauri, and T. Pichiler. Phonon surface
mapping of graphite: Disentangling quasi-degenerate phonon dispersions.
Phys. Rev. B , 80:085423, 2009.
38. O. Madelung. Solid State Theory . Springer-Verlag, Berlin, Berlin, 1978.
39. J. Zimmermann, P. Pavone, and Cuniberti G. Vibrational modes and low-
temperature thermal properties of graphene and carbon nanotubes: Minimal
force-constant model. Phys. Rev. B , 78:0454101, 2008.
40. S. Guha, J. Menendez, J. B. Page, and G. B. Adams. Empirical bond polar-
izability model for fullerenes. Phys. Rev. B , 53:13106, 1996.
41. G. W. Chantry. The Raman Effect . Dekker, New York, NY, vol. 1 edition,
1971.
42. R. Saito, M. Furukawa, G. Dresselhaus, and M. S. Dresselhaus. unpublished
and Master Thesis: M. Furukawa, Tohoku University , 2010.
43. R. Saito, T. Takeya, T. Kimura, G. Dresselhaus, and M. S. Dresselhaus.
Raman intensity of single-wall carbon nanotubes. Phys. Rev. B , 57:4145,
1998.
44. J. Zhou and J. Dong. Vaibrational property and raman spectrum of carbon
nanoribbon. Appl. Phys. Lett. , 91:173108, 2007.
45. W. Kohn. Image of the fermi surface in the vibration spectrum of a metal
(Kohn anomaly). Phys. Rev. Lett. , 2:393, 1959.
46. S. Piscanec, M. Lazzeri, M. Mauri, A. C. Ferrari, and J. Robertson. Kohn
anomalies and electron-phonon interaction in graphite. Phys. Rev. Lett. ,
93:185503, 2004.
47. M. Lazzeri and F. Mauri. Nonadiabatic kohn anomaly in a doped graphene
monolayer. Phys. Rev. Lett. , 97:266407, 2006.
48. K. Ishikawa and T. Ando. Optical phonon interacting with electrons in carbon
nanotubes. J. Phys. Soc. Jpn. , 75:84713, 2006.
49. V. N. Popov and P. Lambin. Radius and chirality dependence of the ra-
dial breathing mode and the g-band phonon modes of single-walled carbon
nanotubes. Phys. Rev. B , 73:085407, 2006.
50. H. Farhat, H. Son, Ge. G. Samsonidze, S. Reich, M. S. Dresselhaus, and
J. Kong. Phonon softening in individual metallic carbon nanotubes due to
the Kohn anomaly. Phys. Rev. Lett. , 99:145506, 2007.
51. K. Sasaki, R. Saito, G. Dresselhaus, M. S. Dresselhaus, H. Farhat, and
J. Kong. Curvature-induced optical phonon frequency shift in metallic carbon
nanotubes. Phys. Rev. B , 77:245441, 2008.
52. M. Kalbac, H. Farhat, L. Kavan, J. Kong, K. Sasaki, R. Saito, and M. S.
Dresselhaus. Electrochemical charging of individual single-walled carbon nan-
otubes. Nano (ACS) , 3:2320, 2009.
Search WWH ::




Custom Search