Biomedical Engineering Reference
In-Depth Information
32. Olivares AL, Marsal E, Planell JA, Lacroix D (2009) Finite element study of scaffold archi-
tecture design and culture conditions for tissue engineering. Biomaterials 30:6142-6149
33. Cahill S, Lohfeld S, McHugh PE (2009) Finite element predictions compared to experimental
results for the effective modulus of bone tissue engineering scaffolds fabricated by selective
laser sintering. J Mater Sci, Mater Med 20:1255-1262
34. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous
polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413-
3431
35. Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications.
Springer, London
36. Almeida HdE, Bártolo PJ (2010) Virtual topological optimisation of scaffolds for rapid proto-
typing. Med Eng Phys 32:775-782
37. Boccaccio A, Ballini A, Pappalettere C, Tullo D, Cantore S, Desiate A (2011) Finite element
method (FEM), mechanobiology and biomimetic scaffolds in bone tissue engineering. Int J
Biol Sci 7:112-132
38. Chen Y, Zhou S, Li Q (2011) Microstructure design of biodegradable scaffold and its effect
on tissue regeneration. Biomaterials 32:5003-5014. doi: 10.1016/j.biomaterials.2011.03.064
39. Byrne DP, Lacroix D, Planell JA, Kelly DJ, Prendergast PJ (2007) Simulation of tissue dif-
ferentiation in a scaffold as a function of porosity, Young's modulus and dissolution rate:
application of mechanobiological models in tissue engineering. Biomaterials 28:5544-5554.
doi: 10.1016/j.biomaterials.2007.09.003
40. Michell AGM (1904) The limits of economy of material in frame-structures. Philos Mag Ser 6
8:589-597. doi: 10.1080/14786440409463229
41. Culmann K (1866) Die graphische Statik. Meyer & Zeller, Zürich
42. Jang IG, Kim IY (2008) Computational study of Wolff's law with trabecular architecture in
the human proximal femur using topology optimization. J Biomech 41:2353-2361
43. Rainer A, Giannitelli SM, Accoto D, De Porcellinis S, Guglielmelli E, Trombetta M (2011)
Load-adaptive scaffold architecturing: a bioinspired approach to the design of porous ad-
ditively manufactured scaffolds with optimized mechanical properties. Ann Biomed Eng
40:966-975. doi: 10.1007/s10439-011-0465-4
44. Papini M, Zdero R, Schemitsch EH, Zalzal P (2007) The biomechanics of human femurs in
axial and torsional loading: comparison of finite element analysis, human cadaveric femurs,
and synthetic femurs. J Biomech Eng 129:12-19
45. Keaveny TM, Guo XE, Wachtel EF, McMahon TA, Hayes WC (1994) Trabecular bone ex-
hibits fully linear elastic behavior and yields at low strains. J Biomech 27:1127-1136
46. McIntosh L, Cordell JM, Wagoner Johnson AJ (2009) Impact of bone geometry on effective
properties of bone scaffolds. Acta Biomater 5:680-692
47. Viceconti M, Bellingeri L, Cristofolini L, Toni A (1998) A comparative study on different
methods of automatic mesh generation on human femurs. Med Eng Phys 20:1-10
48. Koch JC (1917) The laws of bone architecture. Am J Anat 21:177-298
49. Hobbie RK, Roth BJ (2007) Intermediate physics for medicine and biology. Springer, Berlin
50. Pálfi P (2002) Locally orthotropic femur model. J Comput Appl Mech 5:103-115
51. Pandithevan P, Kumar GS (2010) Finite element analysis of a personalized femoral scaf-
fold with designed microarchitecture. Proc Inst Mech Eng H 224:877-889. doi: 10.1243/
09544119jeim633
Search WWH ::




Custom Search