Civil Engineering Reference
In-Depth Information
High-frequency limit:
α ρ 0 1 + 2 /j δ
¯ r
, Equation ( 4 . 106 )
ρ
=
γP 0 1
, Equation ( 4 . 108 )
1 ) 2 /j δ
¯ rB
K
=
+
References
Biot, M.A., (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low
frequency range, II. Higher frequency range. J. Acoust. Soc. Amer ., 28 , 168 - 91.
Brown, R.J.S., (1980) Connection between formation factor for electrical resistivity and fluid - solid
coupling factor in Biot's equations for acoustic waves in fluid-filled porous media. Geophysics ,
45 , 1269 -75.
Carman, P.C., (1956) Flow of Gases Through Porous Media . Butterworths, London, 1956.
Craggs, A. and Hildebrandt, J.G. (1984) Effective densities and resistivities for acoustic propagation
in narrow tubes. J. Sound Vib ., 92 , 321 -31.
Craggs, A. and Hildebrandt, J.G. (1986) The normal incidence absorption coefficient of a matrix
of narrow tubes with constant cross-section. J. Sound Vib ., 105 , 101 - 7.
Gray, D.E., ed., (1957) American Institute of Physics Handbook , McGraw-Hill, New York.
Hubner, K.H., (1974) The Finite Element Method for Engineers . Wiley-Interscience, New York.
Kergomard, J., (1981) Champ interne et champ externe des instruments `avent, These Universite
de Paris VI.
Kirchhoff, G., (1868) Uber der Einfluss der Warmeleitung in einem Gase auf die Schallbewegung.
Annalen der Physik and Chemie , 134 , 177 -93.
Stinson, M.R., (1991) The propagation of plane sound waves in narrow and wide circular tubes,
and generalization to uniform tubes of arbitrary cross-sectional shape. J. Acoust. Soc. Amer .,
89 , 550 - 8.
Tijdeman, H., (1975) On the propagation of sound waves in cylindrical tubes. J. Sound Vib ., 39 ,
1 - 33.
Zienkiewicz, O.C., (1971) The Finite Element Method in Engineering Science . McGraw-Hill, Lon-
don.
Zwikker, C. & Kosten, C.W. (1949) Sound Absorbing Materials . Elsevier, New York.
Search WWH ::




Custom Search