Civil Engineering Reference
In-Depth Information
Using the symbols
G 3
Pa
=
3 HG 2
Pb
=
3 G 2 I
Pd = 6 GHI + H 3
Pe = 3 GI 2
3 GH 2
Pc
=
+
(10.B.5)
+ 3 H 2 I
= 3 HI 2
Pf
I 3
Pg
=
q P
can be written
q P =
q z Pc
q z Pd
q z Pe
q z Pf
q z Pg
Pa
+
q z Pb
+
+
+
+
+
(10.B.6)
The parameters T 1 ,T 2 ,T 3 are now given by
T 12 q P
T 1 =
T 11 +
(10.B.7)
T 22 q P +
T 23 q P
T 2 =
T 21 +
(10.B.8)
T 32 q P +
T 33 q P +
T 34 q P
T 3
=
T 31
+
(10.B.9)
The slowness component q z
satisfies the following equation
A 6 q z +
A 5 q z +
A 4 q z +
A 3 q z +
A 2 q z +
A 1 q z +
A 0 = 0
(10.B.10)
where
A 6 = T 0 + T 12 I + T 23 N + T 34 Pg
(10.B.11)
A 5 = T 12 H + T 23 M + T 34 Pf
(10.B.12)
A 4 =
T 11 +
T 22 I
+
T 33 N
+
T 12 G
+
T 23 L
+
T 34 Pe
(10.B.13)
A 3 =
T 22 H
+
T 33 M
+
T 23 K
+
T 34 Pd
(10.B.14)
A 2 =
T 21 +
T 32 I
+
T 22 G
+
T 33 L
+
T 23 J
+
T 34 Pc
(10.B.15)
A 1 =
T 32 H
+
T 33 K
+
T 34 Pb
(10.B.16)
A 0 =
T 1 +
T 32 G
+
T 33 J
+
T 34 Pa
(10.B.17)
References
Biot, M. A. (1962) Generalized theory of acoustic propagation in porous dissipative media.
J. Acoust. Soc. Amer . 34 , 1254 - 1264.
Castagnede, B., Aknine, A., Melon, M. and Depollier, C. (1998) Ultrasonic characterization of the
anisotropic behavior of air-saturated porous materials. Ultrasonics 36 , 323 -343.
Cheng, A. H. D. (1997) Material coefficients of anisotropic poroelasticity. Int. J. Rock Mech. Min.
Sci . 34 , 199 -205.
Search WWH ::




Custom Search