Civil Engineering Reference
In-Depth Information
M 4 , 1 = A 1 ( 1 + r 11 ) + A 2 r 12
(8.A.19)
M 4 , 2 =
A 2 ( 1 +
r 22 )
+
A 1 r 21
(8.A.20)
M 4 , 3 =
A 1 r 31 +
A 2 r 32
(8.A.21)
M 5 , 1 =
B 1 ( 1 +
r 11 )
+
B 2 r 12
C 3 r 13
(8.A.22)
M 5 , 2 =
B 2 ( 1 +
r 22 )
+
B 1 r 21
C 3 r 23
(8.A.23)
M 5 , 3 =
C 3 ( 1
r 33 )
+
B 1 r 31 +
B 2 r 32
(8.A.24)
M 6 , 1 =−
jξ( 1 +
r 11 +
r 12 )
3 r 13
(8.A.25)
M 6 , 2 =−
jξ( 1
+
r 21 +
r 22 )
3 r 23
(8.A.26)
M 6 , 3 =
3 ( 1
r 33 )
jξ(r 31 +
r 32 )
(8.A.27)
Appendix 8.B Double Fourier transform and Hankel
transform
Double Fourier transform
1
4 π 2
f (x,y)
=
F (u,v) exp[
j(ux
+
vy) ]d u d v
(8.B.1)
−∞
−∞
F (u,v)
=
f (x,y) exp[ j(ux
+
vy) ]d x d y
(8.B.2)
−∞
−∞
If f depends only on r = x 2
+ y 2 , F depends only on w = u 2
+ v 2 .
Hankel transform
f (r)
=
w F (w) J 0 (rw) d w
(8.B.3)
0
F (w)
=
r f (r) J 0 (rw) d r
(8.B.4)
0
Relationship between the two transforms
Equations (8A.1) and (8A.2) can be rewritten with the polar coordinates r , θ instead of
x,y ,and w , ψ instead of u,w
2 π
1
4 π 2
f (r)
=
F (w)w d w
exp[
j(rw cos
ϕ)) ]d ψ
(8.B.5)
0
0
Search WWH ::




Custom Search