Civil Engineering Reference
In-Depth Information
This force tends to zero with ε , and a boundary condition for the stress at x
=−
l is
σ xx (
σ xx (
p(
l)
+
l)
+
l)
= 0
(6.97)
Another boundary condition is derived from the continuity of pressure and can be
expressed
σ xx ( l) =− φp( l)
(6.98)
φ being the porosity of the material. The use of Equations (6.97) and (6.98) yields
σ xx (
l)
=−
( 1
φ)p(
l)
(6.99)
The conservation of the volume of air and frame through the plane x =− l yields
φ u f (
φ)u s (
u a (
l)
+
( 1
l)
=
l)
(6.100)
u a (
l) being the velocity of the free air at the boundary. The surface impedance Z of
the material is given by
l)/u a (
Z
=
p(
l)
(6.101)
This surface impedance can be evaluated in the following way. At first, it can easily
be shown that Equations (6.91), (6.92) and (6.95) together yield
V i =−
V r ,
i =−
V r
(6.102)
Equations (6.98) - (6.102) yield
φ)u a (
Z 1 V i [exp (jδ 1 l)
( 1
l)Z
=−
1 l) ]
Z 2 V i [exp (jδ 2 l) + exp ( 2 l) ]
+ exp (
(6.103)
φ u a ( l)Z =− Z 1 φµ 1 V i [exp (jδ 1 l) + exp ( 1 l) ]
(6.104)
Z 2 φµ 2 V i [exp (jδ 2 l)
+
exp (
2 l) ]
φ) ] V i [exp (jδ 1 l)
[ φµ 1
+
( 1
exp (
1 l) ]
(6.105)
φ) ] V i [exp (jδ 2 l)
u a (
+ [ φµ 2 +
( 1
exp (
2 l) ] =
l)
This system of three equations (6.103) - (6.105) has a solution ( V i , V i )if
2 Z 1 cos δ 1 l
2 Z 2 cos δ 2 l
( 1
φ)Z
2 Z 1 µ 1 cos δ 1 l
2 Z 2 µ 2 cos δ 2 l
Z
= 0
(6.106)
1
2 j sin δ 1 l(φµ 1
+
1
φ) 2 j sin δ 2 l(φµ 2
+
1
φ)
and Z is given by
j (Z 1 Z 2 µ 2
Z 2 Z 1 µ 1 )
Z
=−
(6.107)
D
where D is given by
D = ( 1 φ + φµ 2 ) [ Z 1 ( 1 φ)Z 1 µ 1 ]tg δ 2 l
+
φµ 1 ) [ Z 2 µ 2 ( 1
Z 2 ]tg δ 1 l
( 1
φ
+
φ)
(6.108)
Search WWH ::




Custom Search