Civil Engineering Reference
In-Depth Information
time dependent
deviator stress D
drained
on these sides
u w =0
1
23
45
E' = 10 4 kN/m 2
υ ' = 0.25
k x =k y = g w
6
7
8
f '=30 °
c'= 0
y '= 0
s 3 = -100 kN/m 2
1m
9
10
11
12
13
14
15
16
17
18
19
20
21
undrained
on these sides
u w / n=o
1m
nxe nye np_types
2 2 1
prop(k x / g w ,k y / g w ,e,v,phi,c,psi)
1.0e-6 1.0e-6 1.0e4 0.25 30.0 0.0 0.0
etype(not needed)
cons
-100.0
x_coords, y_coords
0.0 0.5 1.0
0.0 -0.5 -1.0
dtim nstep theta npri nres
0.5 200 0.5 1 1
nr,(k,nf(:,k),i=1,nr)
20
1 0 1 0 2 1 1 0 3 1 1 0 4 1 1 0 5 1 1 0
6 0 1 0 7 1 1 0 8 1 1 0 9 0 1 1 10 1 1 0
12 1 1 0 13 1 1 0 14 0 1 0 15 1 1 0 16 1 1 0
17 0 0 1 18 1 0 0 19 1 0 1 20 1 0 0 21 1 0 0
loaded_nodes,(no(i),val(i,:),i=1,loaded_nodes)
5
1 0.0 -0.08333 2 0.0 -0.33333 3 0.0 -0.16667
4 0.0 -0.33333 5 0.0 -0.08333
tol limit
0.001 250
nlfp,(lf(:,i),i=1,nlfp)
2
0.0 0.0 10.0 150.0
Figure 9.12
Mesh and data for Program 9.4 example
The illustrative problem shown in Figure 9.12 involves compression of a plane strain
block of saturated elastic-plastic cohesionless soil by a time-dependent “deviator” stress D
which is the difference between the vertical and (constant) horizontal stresses on the soil.
The data follows a similar course to that followed for Program 9.3. The number of
properties has expanded to seven ( nprops=7 ) with the addition of the friction angle φ ,
Search WWH ::




Custom Search