Chemistry Reference
In-Depth Information
REFERENCES
1. Prendergast, P., Huiskes, R., and Søballe, K. Biophysical stimuli on cells during tissue differen-
tiation at implant interfaces. Journal of Biomechanics, 30 (6), 539-548 (1997).
2. Mauck, R., Hung, C., and Ateshian, G. Modeling of neutral solute transport in a dynamically
loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue engi-
neering. Journal of biomechanical engineering , 125 , 602 (2003).
3. Evans, R. and Quinn, T. Dynamic compression augments interstitial transport of a glucose-like
solute in articular cartilage. Biophysical journal , 91 (4), 1541-1547 (2006).
4. Quinn, T., Studer, C., Grodzinsky, A., and Meister, J. Preservation and analysis of nonequilib-
rium solute concentration distributions within mechanically compressed cartilage explants. Jour-
nal of biochemical and biophysical methods , 52 (2), 83-95 (2002).
5. Bonassar, L., Grodzinsky, A., Frank, E. et al. The effect of dynamic compression on the response
of articular cartilage to insulin-like growth factor-I. Journal of orthopaedic research , 19 (1), 11-
17 (2001).
6. Garcia, A., Frank, E., Grimshaw, P., and Grodzinsky, A. Contributions of Àuid convection and
electrical migration to transport in cartilage: relevance to loading. Archives of biochemistry and
biophysics , 333 (2), 317-325 (1996).
7. Chahine, N., Albro, M., Lima, E. et al. Effect of dynamic loading on the transport of solutes into
agarose hydrogels. Biophysical journal , 97 (4), 968 (2009).
8. Swartz, M. and Fleury, M. Interstitial Àow and its effects in soft tissues. Biomedical Engineering ,
9 (1), 229 (2007).
9. Sengers, B., Oomens, C., and Baaijens, F. An integrated ¿nite-element approach to mechanics,
transport and biosynthesis in tissue engineering. Journal of biomechanical engineering , 126 , 82
(2004).
10. Gardiner, B., Smith, D., Pivonka, P. et al. Solute transport in cartilage undergoing cyclic de-
formation. Computer Methods in Biomechanics and Biomedical Engineering , 10 (4), 265-278
(2007).
11. Zhang, L. and Szeri, A. Transport of neutral solute in articular cartilage effects of loading and
particle size. Proceedings of the Royal Society A , 461 (2059), 2021 (2005).
12. Zhang, L., Gardiner, B., Smith, D. et al. The effect of cyclic deformation and solute binding on
solute transport in cartilage. Archives of biochemistry and biophysics , 457 (1), 47-56 (2007).
13. Travascio, F. Modeling Molecular Transport and Binding Interactions in Intervertebral Disc .
Ph.D. thesis. (2009).
14. Ferguson, S. Ito, K., and Nolte, L. Fluid Àow and convective transport of solutes within the in-
tervertebral disc. Journal of biomechanics , 37 (2), 213-221 (2004).
15. Urciuolo, F., Imparato, G., and Netti, P. Effect of dynamic loading on solute transport in soft gels
implication for drug delivery. AIChE Journal , 54 (3), 824-834 (2008).
16. Mow, V., Kuei, S., Lai, W., and Armstrong, C. Biphasic creep and stress relaxation of articular
cartilage in compression: theory and experiments. Journal of Biomechanical Engineering , 102 ,
73 (1980).
17. Grossberg, Yu. A. and Khokhlov, A. R. Statistical Physics of Macromolecules . Nauka Publishers,
Moscow (1988).
18. Soltz, M. and Ateshian, G. Interstitial Àuid pressurization during con¿ned compression cyclical
loading of articular cartilage. Annals of Biomedical Engineering, 28 (2), 150-159 (2000).
19. Diamond, S. and Anand, S. Inner clot diffusion and permeation during ¿brinolysis. Biophysical
journal , 65 (6), 2622-2643 (1993).
20. Weisel, J. The mechanical properties of ¿brin for basic scientists and clinicians. Biophysical
chemistry , 112 (2-3), 267-276 (2004).
21. Noailly, J., Van Oosterwyck, H., Wilson, W. et al. A poroviscoelastic description of ¿brin gels.
Journal of biomechanics , 41 (15), 3265-3269 (2008).
22. Matveyev, M. and Domogatsky, S. Penetration of macromolecules into contracted blood clot.
Biophysical journal , 63 (3), 862 (1992).
Search WWH ::




Custom Search