Biology Reference
In-Depth Information
80. Bennett SE, Sung JS, Mosbaugh DW. Fidelity of uracil-initiated
base excision DNA repair in DNA polymerase beta-proficient
and -deficient mouse embryonic fibroblast cell extracts. J Biol
Chem 2001;
102. Caldecott KW, et al. Characterization of the XRCC1-DNA ligase
III complex in vitro and its absence from mutant hamster cells.
Nucleic Acids Res 1995;
43.
103. Cappelli E, et al. Involvement of XRCC1 and DNA ligase III gene
products in DNA base excision repair. J Biol Chem 1997;
23
(23):4836
e
600.
81. Zhang QM, Dianov GL. DNA repair fidelity of base excision
repair pathways in human cell extracts. DNA Repair (Amst)
2005;
276
(45):42588
e
272
(38):
5.
104. Thompson LH, West MG. XRCC1 keeps DNA from getting
stranded. Mutat Res 2000;
23970
e
70.
82. Gu H, et al. Deletion of a DNA polymerase beta gene segment in
T cells using cell
4
(2):263
e
18.
105. Tebbs RS, et al. Requirement for the Xrcc1 DNA base excision
repair gene during early mouse development. Dev Biol 1999;
208
459
(1):1
e
type-specific gene targeting. Science 1994;
6.
83. Hirose F, et al. Difference in the expression level of DNA poly-
merase beta among mouse tissues: high expression in the
pachytene spermatocyte. Exp Cell Res 1989;
265
(5168):103
e
29.
106. Nash RA, et al. XRCC1 protein interacts with one of two distinct
forms of DNA ligase III. Biochemistry 1997;
(2):513
e
80.
84. Zmudzka BZ, et al. Characterization of DNA polymerase beta
mRNA: cell-cycle and growth response in cultured human cells.
Nucleic Acids Res 1988;
181
(1):169
11.
107. Kubota Y, et al. Reconstitution of DNA base excision-repair with
purified human proteins: interaction between DNA polymerase
beta and the XRCC1 protein. EMBO J 1996;
36
(17):5207
e
e
96.
85. Fornace Jr AJ, et al. Induction of beta-polymerase mRNA by
DNA-damaging agents in Chinese hamster ovary cells. Mol Cell
Biol 1989;
16
(20):9587
70.
108. Masson M, et al. XRCC1 is specifically associated with poly(ADP-
ribose) polymerase and negatively regulates its activity following
DNA damage. Mol Cell Biol 1998;
15
(23):6662
e
e
3.
86. Cabelof DC, et al. Induction of DNA polymerase beta-dependent
base excision repair in response to oxidative stress in vivo.
Carcinogenesis 2002;
9
(2):851
71.
109. Vidal AE, et al. XRCC1 coordinates the initial and late stages of
DNA abasic site repair through protein-protein interactions.
EMBO J 2001;
18
(6):3563
e
e
9.
110. Marsin S, et al. Role of XRCC1 in the coordination and stimula-
tion of oxidative DNA damage repair initiated by the DNA
glycosylase hOGG1. J Biol Chem 2003;
20
(22):6530
25.
87. Chan KK, Zhang QM, Dianov GL. Base excision repair fidelity in
normal and cancer cells. Mutagenesis 2006;
23
(9):1419
e
e
8.
88. Chan K, et al. Overexpression of DNA polymerase beta results in
an increased rate of frameshift mutations during base excision
repair. Mutagenesis 2007;
21
(3):173
e
74.
111. Fan J, et al. XRCC1 co-localizes and physically interacts with
PCNA. Nucleic Acids Res 2004;
278
(45):44068
e
8.
89. Tomkinson AE, et al. DNA ligases: structure, reaction mecha-
nism, and function. Chem Rev 2006;
22
(3):183
201.
112. Wong HK, Wilson 3rd DM. XRCC1 and DNA polymerase beta
interaction contributes to cellular alkylating-agent resistance and
single-strand break repair. J Cell Biochem 2005;
32
(7):2193
e
e
99.
90. Tomkinson AE, Levin DS. Mammalian DNA ligases. Bioessays
1997;
106
(2):687
e
804.
113. Hassa O, Hottiger MO. The diverse biological roles of mamma-
lian PARPS, a small but powerful family of poly-ADP-ribose
polymerases. Front Biosci 2008;
95
(4):794
e
901.
91. Levin DS, et al. An interaction between DNA ligase I and
proliferating cell nuclear antigen: implications for Okazaki frag-
ment synthesis and joining. Proc Natl Acad Sci, USA 1997;
19
(10):893
e
82.
114. Zharkov D. Base excision DNA repair. Cellular and Molecular Life
Sciences 2008;
13
:3046
e
94
(24):
8.
92. Soderhall S. DNA ligases during rat liver regeneration. Nature
1976;
12863
65.
115. Allinson SL, Dianova II , Dianov GL. Poly(ADP-ribose) poly-
merase in base excision repair: always engaged, but not essential
for DNA damage processing. Acta Biochim Pol 2003;
65
(10):1544
e
e
2.
93. Aboussekhra A, et al. Mammalian DNA nucleotide excision
repair reconstituted with purified protein components. Cell
1995;
260
(5552):640
e
79.
116. Rouleau M, Aubin RA, Poirier GG. Poly(ADP-ribosyl)ated chro-
matin domains: access granted. J Cell Sci 2004;
50
(1):169
e
68.
94. Levin DS, et al. Interaction between PCNA and DNA ligase I is
critical for joining of Okazaki fragments and long-patch base-
excision repair. Current Biology 2000;
80
(6):859
25.
117. Hassa O, et al. Nuclear ADP-ribosylation reactions in mammalian
cells: where are we today and where are we going? Microbiol Mol
Biol Rev 2006;
117
(Pt 6):815
e
e
22. S1-S2.
95. Barnes DE, et al. Mutations in the DNA ligase I gene of an
individual with immunodeficiencies and cellular hypersensitivity
to DNA-damaging agents. Cell 1992;
10
(15):919
829.
118. Parsons JL, et al. Poly(ADP-ribose) polymerase-1 protects exces-
sive DNA strand breaks from deterioration during repair in
human cell extracts. FEBS J 2005;
70
(3):789
e
e
503.
96. Prigent C, et al. Aberrant DNA repair and DNA replication due
to an inherited enzymatic defect in human DNA ligase I. Mol Cell
Biol 1994;
69
(3):495
e
21.
119. Maga G, Hubscher U. Proliferating cell nuclear antigen (PCNA):
a dancer with many partners. J Cell Sci 2003;
272
(8):2012
e
60.
120. Prakash S, Johnson RE, Prakash L. Eukaryotic translesion
synthesis DNA polymerases: specificity of structure and function.
Annu Rev Biochem 2005;
116
(Pt 15):3051
e
7.
97. Mackey ZB, et al. An alternative splicing event which occurs in
mouse pachytene spermatocytes generates a form of DNA ligase
III with distinct biochemical properties that may function in
meiotic recombination. Mol Cell Biol 1997;
14
(1):310
e
53.
121. Ko R, Bennett SE. Physical and functional interaction of human
nuclear uracil-DNA glycosylase with proliferating cell nuclear
antigen. DNA Repair (Amst) 2005;
74
:317
e
98.
98. Tomkinson AE, Mackey ZB. Structure and function of mamma-
lian DNA ligases. Mutat Res 1998;
17
(2):989
e
31.
122. Oyama M, et al. Human NTH1 physically interacts with p53 and
proliferating cell nuclear antigen. Biochem Biophys Res Commun
2004;
4
(12):1421
e
9.
99. Tomkinson AE, et al. Completion of base excision repair by
mammalian DNA ligases. Prog Nucleic Acid Res Mol Biol 2001;
407
(1):1
e
68
:
91.
123. Friedrich-Heineken E, et al. The two DNA clamps Rad9/Rad1/
Hus1 complex and proliferating cell nuclear antigen differentially
regulate flap endonuclease 1 activity. J Mol Biol 2005;
321
(1):183
e
64.
100. Taylor RM, et al. Role of the DNA ligase III zinc finger in poly-
nucleotide binding and ligation. Nucleic Acids Res 1998;
151
e
353
(5):
26
(21):
10.
101. Caldecott KW, et al. An interaction between the mammalian
DNA repair protein XRCC1 and DNA ligase III. Mol Cell Biol
1994;
4804
9.
124. Fan J, Wilson 3rd DW. Protein-protein interactions and post-
translational modifications in mammalian base excision repair.
Free Radic Biol Med 2005;
980
e
e
14
(1):68
e
76.
38
(9):1121
e
38.
Search WWH ::




Custom Search