Biology Reference
In-Depth Information
37. Toledano MB, Leonard WJ. Modulation of transcription factor
NF-kappa B binding activity by oxidation-reduction in vitro. Proc
Natl Acad Sci USA 1991;
58. Burke-Gaffney A, Callister ME, Nakamura H. Thioredoxin: friend
or foe in human disease? Trends Pharmacol Sci 2005;
404.
59. Arner ES, Holmgren A. The thioredoxin system in cancer. Semin
Cancer Biol 2006;
(8):398
26
e
32.
38. Hiramoto M, Shimizu N, Sugimoto K, et al. Nuclear targeted
suppression of NF-kappa B activity by the novel quinone deriv-
ative E3330. J Immunol 1998;
(10):4328
88
e
6.
60. Mukherjee A, Martin SG. The thioredoxin system: a key target in
tumour and endothelial cells. Br J Radiol 2008;
(6):420
16
e
9.
39. Baeuerle PA, Baltimore DA. 65-kappaD subunit of active NF-
kappaB is required for inhibition of NF-kappaB by I kappaB.
Genes Dev 1989;
(2):810
68. SpecNo 1.
61. Biaglow JE, Miller RA. The thioredoxin reductase/thioredoxin
system: novel redox targets for cancer therapy. Cancer Biol Ther
2005;
81
:S57
e
160
e
98.
40. Goto M, Yamada K, Katayama K, Tanaka I. Inhibitory effect of
E3330, a novel quinone derivative able to suppress tumor
necrosis factor-alpha generation, on activation of nuclear factor-
kappa B. Mol Pharmacol 1996;
(11):1689
13.
62. Chew EH, Lu J, Bradshaw TD, Holmgren A. Thioredoxin
reductase inhibition by antitumor quinols: a quinol pharmaco-
phore effect correlating to antiproliferative activity. FASEB J 2008;
22
4
(1):6
e
3
e
73.
41. Matthews JR, Wakasugi N, Virelizier JL, Yodoi J, Hay RT. Thio-
redoxin regulates the DNA binding activity of NF-kappa B by
reduction of a disulphide bond involving cysteine 62. Nucleic
Acids Res 1992;
(5):860
83.
63. Liu F, Fu Y, Meyskens Jr FL. MiTF regulates cellular response to
reactive oxygen species through transcriptional regulation of
APE-1/Ref-1. J Invest Dermatol 2009;
(6):2072
e
49
e
31.
64. Liu Z, Huang SL, Li MM, Huang ZS, Lee KS, Gu LQ. Inhibition of
thioredoxin reductase by mansonone F analogues: implications
for anticancer activity. Chem Biol Interact 2009;
129
(2):422
e
30.
42. Hirota K, Matsui M, MurataM, et al. Nucleoredoxin, glutaredoxin,
and thioredoxin differentially regulate NF-kappaB, AP-1, and
CREB activation in HEK293 cells. Biochem Biophys Res Commun
2000;
(15):3821
20
e
57.
65. Fernandes AP, Holmgren A. Glutaredoxins: glutathione-
dependent redox enzymes with functions far beyond a simple
thioredoxin backup system. Antioxid Redox Signal 2004;
(1):48
177
e
82.
43. Shimizu N, Sugimoto K, Tang J, et al. High-performance affinity
beads
274
(1):177
e
(1):
6
for
identifying
drug
receptors. Nat
Biotechnol
74.
66. Lillig CH, Berndt C, Holmgren A. Glutaredoxin systems. Biochim
Biophys Acta 2008;
63
e
81.
44. Nishi T, Shimizu N, Hiramoto M, et al. Spatial redox regulation of
a critical cysteine residue of NF-kappa B in vivo. J Biol Chem
2002;
2000;
(8):877
18
e
17.
67. Akamatsu Y, Ohno T, Hirota K, Kagoshima H, Yodoi J,
Shigesada K. Redox regulation of the DNA binding activity in
transcription factor PEBP2. The roles of two conserved cysteine
residues. J Biol Chem 1997;
(11):1304
1780
e
56.
45. Ando K, Hirao S, Kabe Y, et al. A new APE1/Ref-1-dependent
pathway leading to reduction of NF-kappaB and AP-1, and
activation of
(46):44548
277
e
500.
68. Huang RP, Adamson ED. Characterization of the DNA-binding
properties of the early growth response-1 (Egr-1) transcription
factor: evidence for modulation by a redox mechanism. DNA Cell
Biol 1993;
(23):14497
272
e
their DNA-binding activity. Nucleic Acids Res
36.
46. Luo M, Delaplane S, Jiang A, et al. Role of the multifunctional
DNA repair and redox signaling protein Ape1/Ref-1 in cancer
and endothelial cells: small molecule inhibition of Ape1's redox
function. Antioxid Redox Signal 2008;
2008;
(13):4327
36
e
73.
69. Hirota K, Matsui M, Iwata S, Nishiyama A, Mori K, Yodoi J. AP-1
transcriptional activity is regulated by a direct association
between thioredoxin and Ref-1. Proc Natl Acad Sci USA
1997;
12
(3):265
e
67.
47. Georgiadis M, Luo M, Gaur R, Delaplane S, Li X, Kelley M.
Evolution of the redox function in mammalian apurinic/apyr-
imidinic endonuclease. Mutat Res 2008;
10
(11):1853
e
8.
70. Tell G, Damante G, Caldwell D, Kelley MR. The intracellular
localization of APE1/Ref-1: more than a passive phenomenon?
Antioxid Redox Signal 2005;
94
(8):3633
e
63.
48. Jacob C, Giles GI, Giles NM, Sies H. Sulfur and selenium: the role
of oxidation state in protein structure and function. Angew Chem
Int Ed Engl 2003;
(1-2):54
643
e
84.
71. Holmgren A. Thioredoxin and glutaredoxin systems. J Biol Chem
1989;
7
(3-4):367
e
58.
49. Giles NM, Giles GI, Jacob C. Multiple roles of cysteine in bio-
catalysis. Biochem Biophys Res Commun 2003;
(39):4742
42
e
6.
72. Nakamura H. Thioredoxin and its related molecules: update
2005. Antioxid Redox Signal 2005;
(24):13963
264
e
4.
50. Kurooka H, Kato K, Minoguchi S, et al. Cloning and character-
ization of the nucleoredoxin gene that encodes a novel nuclear
protein related to thioredoxin. Genomics 1997;
300
(1):1
e
8.
73. Lillig CH, Holmgren A. Thioredoxin and related molecules
(5-6):823
7
e
e
from biology to health and disease. Antioxid Redox Signal
2007;
9.
51. Nakamura H, Nakamura K, Yodoi J. Redox regulation of cellular
activation. Annu Rev Immunol 1997;
(3):331
39
e
47.
74. Forman-Kay JD, Clore GM, Gronenborn AM. Relationship
between electrostatics and redox function in human thioredoxin:
characterization of pH titration shifts using two-dimensional
homo- and heteronuclear NMR. Biochemistry 1992;
(1):25
9
e
69.
52. Holmgren A. Thioredoxin structure and mechanism: conforma-
tional changes on oxidation of the active-site sulfhydryls to
a disulfide. Structure 1995;
15
:351
e
52.
75. Hol WG. The role of the alpha-helix dipole in protein function
and structure. Prog Biophys Mol Biol 1985;
(13):3442
43.
53. Arner ES, Holmgren A. Physiological functions of thioredoxin
and thioredoxin reductase. Eur J Biochem 2000;
3
(3):239
e
31
e
9.
54. Powis G, Montfort WR. Properties and biological activities of
thioredoxins. Annu Rev Pharmacol Toxicol 2001;
(20):6102
95.
76. Weichsel A, Gasdaska JR, Powis G, Montfort WR. Crystal struc-
tures of reduced, oxidized, and mutated human thioredoxins:
evidence for a regulatory homodimer. Structure 1996;
(3):149
267
e
45
e
95.
55. Yamawaki H, Berk BC. Thioredoxin: a multifunctional antioxi-
dant enzyme in kidney, heart and vessels. Curr Opin Nephrol
Hypertens 2005;
:261
41
e
51.
77. Kondo N, Nakamura H, Masutani H, Yodoi J. Redox regulation
of human thioredoxin network. Antioxid Redox Signal 2006;
4
(6):735
e
53.
56. Akterin S, Cowburn RF, Miranda-Vizuete A, et al. Involvement of
glutaredoxin-1 and thioredoxin-1 in beta-amyloid toxicity and
Alzheimer's disease. Cell Death Differ 2006;
(2):149
14
e
8
90.
78. Hofmann B, Hecht HJ, Flohe L. Peroxiredoxins. Biol Chem
2002;
(9-10):1881
e
65.
57. Raffel J, Bhattacharyya AK, Gallegos A, et al. Increased expres-
sion of thioredoxin-1 in human colorectal cancer is associated
with decreased patient survival. J Lab Clin Med 2003;
(9):1454
64.
79. Wood ZA, Poole LB, Karplus PA. Peroxiredoxin evolution and
the regulation of hydrogen peroxide signaling. Science 2003;
300
(3-4):347
13
e
383
e
142
(1):46
e
51.
(5619):650
e
3.
Search WWH ::




Custom Search