Biology Reference
In-Depth Information
87. Callen E, Jankovic M, Wong N, et al. Essential role for DNA-PKcs
in DNA double-strand break repair and apoptosis in ATM-defi-
cient lymphocytes. Mol Cell 2009; 34 :285 e 97.
88. Gapud EJ, Dorsett Y, Yin B, et al. Ataxia telangiectasia mutated
(Atm) and DNA-PKcs kinases have overlapping activities during
chromosomal signal
107. Li Z, Otevrel T, Gao Y, et al. The XRCC4 gene encodes a novel
protein involved in DNA double-strand break repair and V(D)J
recombination. Cell 1995; 83 :1079 e 89.
108. Critchlow SE, Bowater RP, Jackson SP. Mammalian DNA double-
strand break repair protein XRCC4 interacts with DNA ligase IV.
Curr Biol 1997; 7 :588 e 98.
109. Lieber MR. The mechanism of human nonhomologous DNA end
joining. J Biol Chem 2008; 283 :1 e 5.
110. Weterings E, Chen DJ. The endless tale of non-homologous end-
joining. Cell Res 2008; 18 :114 e 24.
111. Moshous D, Callebaut I, de Chasseval R, et al. Artemis, a novel
DNA double-strand break repair/V(D)J recombination protein, is
mutated in human severe combined immune deficiency. Cell
2001; 105 :177 e 86.
112. Ma Y, Schwarz K, Lieber MR. The Artemis:DNA-PKcs endonu-
clease cleaves DNA loops, flaps, gaps. DNA Repair (Amst)
2005; 4 :845 e 51.
113. Jeggo P, O'Neill P. The Greek Goddess, Artemis, reveals the
secrets of her cleavage. DNA Repair (Amst) 2002; 1 :771 e 7.
114. Buck D, Malivert L, de Chasseval R, et al. Cernunnos, a novel
nonhomologous end-joining factor, is mutated in human immu-
nodeficiency with microcephaly. Cell 2006; 124 :287 e 99.
115. Ahnesorg P, Smith P, Jackson SP. XLF interacts with the XRCC4-
DNA ligase IV complex to promote DNA nonhomologous end-
joining. Cell 2006; 124 :301 e 13.
116. Li Y, Chirgadze DY, Bolanos-Garcia VM, et al. Crystal structure of
human XLF/Cernunnos reveals unexpected differences from
XRCC4 with implications for NHEJ. EMBO J 2008; 27 :290 e 300.
117. Andres SN, Modesti M, Tsai CJ, Chu G, Junop MS. Crystal
structure of human XLF: A twist in nonhomologous DNA end-
joining. Mol Cell 2007; 28 :1093 e 101.
118. Gu J, Lu H, Tsai AG, Schwarz K, Lieber MR. Single-stranded
DNA ligation and XLF-stimulated incompatible DNA end liga-
tion by the XRCC4-DNA ligase IV complex: influence of terminal
DNA sequence. Nucleic Acids Res 2007; 35 :5755 e 62.
119. Lu H, Pannicke U, Schwarz K, Lieber MR. Length-dependent
binding of human XLF to DNA and stimulation of XRCC4-DNA
ligase IV activity. J Biol Chem 2007; 282 :11155 e 62.
120. Sulek M, Yarrington R, McGibbon G, Boeke JD, Junop M.
A critical role for the C-terminus of Nej1 protein in Lif1p asso-
ciation, DNA binding and non-homologous end-joining. DNA
Repair (Amst) 2007; 6 :1805 e 18.
121. Tsai CJ, Kim SA, Chu G. Cernunnos/XLF promotes the ligation
of mismatched and noncohesive DNA ends. Proc Natl Acad Sci
USA 2007; 104 :7851 e 6.
122. Riballo E, Woodbine L, Stiff T, Walker SA, Goodarzi AA,
Jeggo PA. XLF-Cernunnos promotes DNA ligase IV-XRCC4 re-
adenylation following ligation. Nucleic Acids Res 2009; 37 :482 e 92.
123. O'Driscoll M, Jeggo PA. The role of double-strand break repair e
insights from human genetics. Nat Rev Genet 2006; 7 :45 e 54.
124. Yano K, Chen DJ. Live cell imaging of XLF and XRCC4 reveals
a novel view of protein assembly in the non-homologous end-
joining pathway. Cell Cycle 2008; 7 :1321 e 5.
125. Lieber MR, Lu H, Gu J, Schwarz K. Flexibility in the order of
action and in the enzymology of the nuclease, polymerases, ligase
of vertebrate non-homologous DNA end joining: relevance to
cancer, aging, the immune system. Cell Res 2008; 18 :125 e 33.
126. Dynan WS, Yoo S. Interaction of Ku protein and DNA-dependent
protein kinase catalytic subunit with nucleic acids. Nucleic Acids
Res 1998; 26 :1551 e 9.
127. Yano K, Morotomi-Yano K, Wang SY, et al. Ku recruits XLF to
DNA double-strand breaks. EMBO Rep 2008; 9 :91 e 6.
128. Walker JR, Corpina RA, Goldberg J. Structure of the Ku hetero-
dimer bound to DNA and its implications for double-strand
break repair. Nature 2001; 412 :607 e 14.
joint formation. Proc Natl Acad Sci USA
2011; 108 :2022 e 7.
89. Jeggo PA, Kemp LM. X-ray-sensitive mutants of Chinese hamster
ovary cell line isolation and cross-sensitivity to other DNA-
damaging agents. Mutat Res 1983; 112 :313 e 27.
90. Kemp LM, Sedgwick SG, Jeggo PA. X-ray sensitive mutants of
Chinese hamster ovary cells defective in double-strand break
rejoining, Mutat Res 1084; 132: 189-96.
91. Jeggo PA. Studies on mammalian mutants defective in rejoining
double-strand breaks in DNA. Mutat Res 1990; 239 :1 e 16.
92. Getts RC, Stamato TD. Absence of a Ku-like DNA end binding
activity in the xrs double-strand DNA repair-deficient mutant.
J Biol Chem 1994; 269 :15981 e 4.
93. Mimori T, Hardin JA. Mechanism of interaction between Ku
protein and DNA. J Biol Chem 1986; 261 :10375 e 9.
94. Mimori T, Ohosone Y, Hama N, et al. Isolation and character-
ization of cDNA encoding the 80-kDa subunit protein of the
human autoantigen Ku (p70/p80) recognized by autoantibodies
from patients with scleroderma-polymyositis overlap syndrome.
Proc Natl Acad Sci USA 1990; 87 :1777 e 81.
95. Dvir A, Peterson SR, Knuth MW, Lu H, Dynan WS. Ku auto-
antigen is the regulatory component of a template-associated
protein kinase that phosphorylates RNA polymerase II. Proc Natl
Acad Sci USA 1992; 89 :11920 e 4.
96. Lees-Miller SP, Chen YR, Anderson CW. Human cells contain
a DNA-activated protein kinase that phosphorylates simian virus
40 T antigen, mouse p53, the human Ku autoantigen. Mol Cell Biol
1990; 10 :6472 e 81.
97. Carter T, Vancurova I, Sun I, Lou W, DeLeon S. A DNA-activated
protein kinase from HeLa cell nuclei. Mol Cell Biol 1990; 10 :
6460 e 71.
98. Gottlieb TM, Jackson SP. The DNA-dependent protein kinase:
requirement for DNA ends and association with Ku antigen. Cell
1993; 72 :131 e 42.
99. Dvir A, Stein LY, Calore BL, Dynan WS. Purification and
characterization of a template-associated protein kinase that
phosphorylates RNA polymerase II.
J Biol Chem 1993; 268 :
10440 e 7.
100. Lees-Miller SP, Godbout R, Chan DW, et al. Absence of p350
subunit of DNA-activated protein kinase from a radiosensitive
human cell line. Science 1995; 267 :1183 e 5.
101. Schatz DG, Spanopoulou E. Biochemistry of V(D)J recombina-
tion. Curr Top Microbiol Immunol 2005; 290 :49 e 85.
102. Lieber MR, Ma Y, Pannicke U, Schwarz K. The mechanism of
vertebrate nonhomologous DNA end joining and its role in V(D)J
recombination. DNA Repair (Amst) 2004; 3 :817 e 26.
103. Kirchgessner CU, Patil CK, Evans JW, et al. DNA-dependent
kinase (p350) as a candidate gene for the murine SCID defect.
Science 1995; 267 :1178 e 83.
104. Fulop GM, Phillips RA. The scid mutation in mice causes
a general defect in DNA repair. Nature 1990; 347 :479 e 82.
105. Nussenzweig A, Chen C, da Costa Soares V, et al. Requirement
for Ku80 in growth and immunoglobulin V(D)J recombination.
Nature 1996; 382 :551 e 5.
106. Giaccia AJ, Denko N, MacLaren R, et al. Human chromosome 5
complements the DNA double-strand break-repair deficiency
and gamma-ray sensitivity of the XR-1 hamster variant. Am J
Hum Genet 1990; 47 :459 e 69.
Search WWH ::




Custom Search