Biology Reference
In-Depth Information
47. Pommier YDNA. topoisomerase I inhibitors: chemistry, biology,
interfacial inhibition. Chem Rev 2009; 109 :2894 e 902.
48. Nitiss JL. Targeting DNA topoisomerase II in cancer chemo-
therapy. Nat Rev Cancer 2009; 9 :338350.
49. Benson III AB. New approaches to assessing and treating early-
stage colon and rectal cancers: cooperative group strategies for
assessing optimal approaches in early-stage disease. Clin Cancer
Res 2007; 13 :S6913 e 20.
50. Oostendorp LJ, Stalmeier PF, Pasker-de Jong PC, Van der
Graaf WT, Ottevanger PB. Systematic review of benefits and risks
of second-line irinotecan monotherapy for advanced colorectal
cancer. Anticancer Drugs 2010; 21 :749 e 58.
51. MacCallum C, Gillenwater HH. Second-line treatment of small-
cell lung cancer. Curr Oncol Rep 2006; 8 :258 e 64.
52. Kawato Y, Aonuma M, Hirota Y, Kuga H, Sato K. Intracellular
roles of SN-38, a metabolite of the camptothecin derivative CPT-
11, in the antitumor effect of CPT-11. Cancer Res 1991; 51 :4187 e 91.
53. Sehouli J, Oskay-Ozceli G. (2009) Current role and future aspects
of topotecan in relapsed ovarian cancer. Curr Med Res Opin
2009; 25 :639 e 51.
54. Hurwitz JL, McCoy F, Scullin P, Fennell DA. New advances in the
second-line treatment of small cell
66. Lieber MR. The mechanism of double-strand DNA break repair
by the nonhomologous DNA end-joining pathway. Annu Rev
Biochem 2010; 79 :181 e 211.
67. Shibata A, Conrad S, Birraux J, et al. Factors determining DNA
double-strand break repair pathway choice in G2 phase. EMBO J
2011; 30 (6):1079 e 92.
68. Rothkamm K, Kruger I, Thompson LH, Lobrich M. Pathways of
DNA double-strand break repair during the mammalian cell
cycle. Mol Cell Biol 2003; 23 :5706 e 15.
69. Beucher A, Birraux J, Tchouandong L, et al. ATM and Artemis
promote homologous recombination of radiation-induced DNA
double-strand breaks in G2. EMBO J 2009; 28 :3413 e 27.
70. Helleday T, Lo J, van Gent DC, Engelward BP. DNA double-
strand break repair: from mechanistic understanding to cancer
treatment. DNA Repair (Amst) 2007; 6 :923 e 35.
71. Sung P, Klein H. Mechanism of homologous recombination:
mediators and helicases take on regulatory functions. Nat Rev
Mol Cell Biol 2006; 7 :739 e 50.
72. San Filippo J, Sung P, Klein H. Mechanism of eukaryotic
homologous recombination. Annu Rev Biochem 2008; 77 :229 e 57.
73. Williams RS, Williams JS, Tainer JA. Mre11-Rad50-Nbs1 is
a keystone complex connecting DNA repair machinery, double-
strand break signaling, the chromatin template. Biochem Cell Biol
2007; 85 :509 e 20.
74. Williams GJ, Lees-Miller SP, Tainer JA. Mre11-Rad50-Nbs1 confor-
mations and the control of sensing, signaling, effector responses
at DNA double-strand breaks. DNA Repair (Amst) 2010; 9 :1299 e 306.
75. Lamarche BJ, Orazio NI, Weitzman MD. The MRN complex in
double-strand break repair and telomere maintenance. FEBS Lett
2010; 584 :3682 e 95.
76. Wang H, Perrault AR, Takeda Y, Qin W, Wang H, Iliakis G.
Biochemical evidence for Ku-independent backup pathways of
NHEJ. Nucleic Acids Res 2003; 31 :5377 e 88.
77. Singh SK, Wu W, Zhang L, Klammer H, Wang M, Iliakis G.
Widespread dependence of backup NHEJ on growth state:
ramifications for the use of DNA-PK inhibitors. Int J Radiat Oncol
Biol Phys 2011; 79 :540 e 8.
78. Lempiainen H, Halazonetis TD. Emerging common themes in
regulation of PIKKs and PI3Ks. EMBO J 2009; 28 :3067 e 73.
79. O'Neill T, Dwyer AJ, Ziv Y, et al. Utilization of oriented peptide
libraries to identify substrate motifs selected by ATM. J Biol Chem
2000; 275 :22719 e 27.
80. Bakkenist CJ, Kastan MB. DNA damage activates ATM through
intermolecular autophosphorylation and dimer dissociation.
Nature 2003; 421 :499 e 506.
81. Lavin MF. Ataxia-telangiectasia: from a rare disorder to a para-
digm for cell signalling and cancer. Nat Rev Mol Cell Biol
2008; 9 :759 e 69.
82. Kurz EU, Lees-Miller SP. DNA damage-induced activation of
ATM and ATM-dependent signaling pathways. DNA Repair
(Amst) 2004; 3 :889 e 900.
83. Matsuoka S, Ballif BA, Smogorzewska A, et al. ATM and ATR
substrate analysis reveals extensive protein networks responsive
to DNA damage. Science 2007; 316 :1160 e 6.
84. Bennetzen MV, Larsen DH, Bunkenborg J, Bartek J, Lukas J,
Andersen JS. Site-specific phosphorylation dynamics of the
nuclear proteome during the DNA damage response. Mol Cell
Proteomics 2010; 9 :1314 e 23.
85. Bensimon A, Schmidt A, Ziv Y, et al. ATM-dependent and
-independent dynamics of the nuclear phosphoproteome after
DNA damage. Sci Signal 2010; 3 :rs3.
86. Stiff T, O'Driscoll M, Rief N, Iwabuchi K, Lobrich M, Jeggo PA.
ATM and DNA-PK function redundantly to phosphorylate
H2AX after exposure to ionizing radiation. Cancer Res 2004; 64 :
2390 e 6.
lung cancer. Oncologist
2009; 14 :986 e 94.
55. Mistry AR, Felix CA, Whitmarsh RJ, et al. DNA topoisomerase II
in therapy-related acute promyelocytic leukemia. N Engl J Med
2005; 352 :1529 e 38.
56. Roca J, Ishida R, Berger JM, Oh T, Wang JC. Antitumor bisdiox-
opiperazines inhibit yeast DNA topoisomerase II by trapping the
enzyme in the form of a closed protein clamp. Proc Natl Acad Sci
USA 91, 1781-1785.
57. Adachi N, Suzuki H, Iiizumi S, Koyama H. Hypersensitivity of
nonhomologous DNA end-joining mutants to VP-16 and ICRF-
193: implications for the repair of topoisomerase II-mediated
DNA damage. J Biol Chem 2003; 278 :35897 e 902.
58. Jensen LH, Dejligbjerg M, Hansen LT, Grauslund M, Jensen PB,
Sehested M. Characterisation of cytotoxicity and DNA damage
induced by the topoisomerase II-directed bisdioxopiperazine
anti-cancer agent ICRF-187 (dexrazoxane) in yeast and mamma-
lian cells. BMC Pharmacol 2004; 4 :31.
59. Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms
of action and clinical strategies. Nat Rev Cancer 2003; 3 :330 e 8.
60. Mauri D, Polyzos NP, Salanti G, Pavlidis N, Ioannidis JP.
Multiple-treatments meta-analysis of chemotherapy and targeted
therapies
in advanced breast
cancer.
J Natl Cancer
Inst
2008; 100 :1780 e 91.
61. de Campos-Nebel M, Larripa I, Gonzalez-Cid M. Non-homologous
end joining is the responsible pathway for the repair of fludar-
abine-induced DNA double strand breaks in mammalian cells.
Mutat Res 2008; 646 :8 e 16.
62. Liu X, Wang Y, Benaissa S, et al. Homologous recombination as
a resistance mechanism to replication-induced double-strand
breaks caused by the antileukemia agent CNDAC. Blood 2010; 116 :
1737 e 46.
63. Issaeva N, Thomas HD, Djureinovic T, et al. 6-thioguanine
selectively kills BRCA2-defective tumors and overcomes PARP
inhibitor resistance. Cancer Res 2010; 70 :6268 e 76.
64. Wachters FM, van Putten JW, Maring JG, Zdzienicka MZ,
Groen HJ, Kampinga HH. Selective targeting of homologous
DNA recombination repair by gemcitabine. Int J Radiat Oncol Biol
Phys 2003; 57 :553 e 62.
65. Mahaney BL, Meek K, Lees-Miller SP. Repair of ionizing radia-
tion-induced DNA double-strand breaks by non-homologous
end-joining. Biochem J 2009; 417 :639 e 50.
Search WWH ::




Custom Search