Biology Reference
In-Depth Information
52. Johnson RE, Prakash S, Prakash L. Efficient bypass of a thymine-
thymine dimer by yeast DNA polymerase, Pol eta. Science
1999;283:1001
73. Braithwaite DK, Ito J. Compilation, alignment, and phylogenetic
relationships of DNA polymerases. Nucleic Acids Res 1993;21:
787-802.
74. Brautigam CA, Steitz TA. Structural and functional insights
provided by crystal structures of DNA polymerases and their
substrate complexes. Curr Opin Struct Biol 1998;8:54
4.
53. Cordonnier AM, Fuchs RP. Replication of damaged DNA:
molecular defect in xeroderma pigmentosum variant cells. Mutat
Res 1999;435:111
e
9.
54. Cordeiro-Stone M, Frank A, Bryant M, et al. DNA damage
responses protect xeroderma pigmentosum variant from UVC-
induced clastogenesis. Carcinogenesis 2002;23:959
e
63.
75. Steitz TA. DNA polymerases: structural diversity and common
mechanisms. J Biol Chem 1999;274:17395
e
8.
76. Johnson SJ, Beese LS. Structures of mismatch replication errors
observed in a DNA polymerase. Cell 2004;116:803
e
65.
55. Bassett E, King NM, Bryant MF, et al. The role of DNA poly-
merase eta in translesion synthesis past platinum-DNA adducts
in human fibroblasts. Cancer Res 2004;64:6469
e
16.
e
77. Kretulskie AM, Spratt TE. Structure of purine
purine mispairs
during misincorporation and extension by Escherichia coli DNA
polymerase I. Biochemistry 2006;45:3740
e
75.
56. Chen YW, Cleaver JE, Hanaoka F, Chang CF, Chou KM. A novel
role of DNA polymerase eta in modulating cellular sensitivity to
chemotherapeutic agents. Mol Cancer Res 2006;4:257
e
6.
78. Hsu GW, Kiefer JR, Burnouf D, Becherel OJ, Fuchs RP, Beese LS.
Observing translesion synthesis of an aromatic amineDNAadduct
by a high-fidelity DNA polymerase. J Biol Chem 2004;279:5020
e
65.
57. Pence MG, Blans P, Zink CN, Hollis T, Fishbein JC, Perrino FW.
(2009) Lesion bypass of N2-ethylguanine by human DNA poly-
merase iota. J Biol Chem 2009;284:1732
e
5.
79. Warren JJ, Forsberg LJ, Beese LS. The structural basis for the
mutagenicity of O(6)-methyl-guanine lesions. Proc Natl Acad Sci,
USA 2006;103:19701
e
40.
58. Washington MT, Minko IG, Johnson RE, et al. Efficient and error-
free replication past a minor-groove DNA adduct by the
sequential action of human DNA polymerases iota and kappa.
Mol Cell Biol 2004;24:5687
e
6.
80. Franklin MC, Wang J, Steitz TA. Structure of the replicating com-
plex of a pol alpha family DNA polymerase. Cell 2001;105:657
e
67.
81. Doubli ´ S, Tabor S, Long AM, Richardson CC, Ellenberger T.
Crystal structure of a bacteriophage T7 DNA replication complex
at 2.2 A resolution. Nature 1998;391:251
e
93.
59. Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AK.
Hoogsteen base pair formation promotes synthesis opposite the
1, N6-ethenodeoxyadenosine lesion by human DNA polymerase
iota. Nat Struct Mol Biol 2006;13:619
e
8.
82. Hsu GW, Ober M, Carell T, Beese LS. Error-prone replication of
oxidatively damaged DNA by a high-fidelity DNA polymerase.
Nature 2004;431:217
e
25.
60. Haracska L, Unk I, Johnson RE, et al. Roles of yeast DNA poly-
merases delta and zeta and of Rev1 in the bypass of abasic sites.
Genes Dev 2001;15:945
e
21.
83. Ling H, Boudsocq F, Plosky BS, Woodgate R, Yang W. Replication
of a cis-syn thymine dimer at atomic resolution. Nature 2003;
424:1083
e
54.
61. Haracska L, Prakash S, Prakash L. Yeast Rev1 protein is a G
template-specificDNApolymerase. J Biol Chem 2002;277:15546
e
7.
84. Washington MT, Wolfle WT, Spratt TE, Prakash L, Prakash S.
Yeast DNA polymerase eta makes functional contacts with the
DNA minor groove only at the incoming nucleoside triphos-
phate. Proc Natl Acad Sci, USA 2003;100:5113
e
51.
62. Ohashi E, Hanafusa T, Kamei K, et al. Identification of a novel
REV1-interacting motif necessary for DNA polymerase kappa
function. Genes Cells 2009;14:101
e
11.
63. Wood A, Garg P, Burgers PM. A ubiquitin-binding motif in the
translesionDNApolymeraseRev1mediates its essential functional
interaction with ubiquitinated proliferating cell nuclear antigen in
response to DNA damage. J Biol Chem 2007;282:20256
e
8.
85. Fleck O, Sch¨r P. Translesion DNA synthesis: little fingers teach
tolerance. Curr Biol 2004;14:R389
e
91.
86. Steitz TA, Yin YW. Accuracy, lesion bypass, strand displacement
and translocation by DNA polymerases. Philos Trans R Soc Lond B
Biol Sci 2004;359:17
e
63.
64. Ohashi E, Ogi T, Kusumoto R, et al. Error-prone bypass of certain
DNA lesions by the human DNA polymerase kappa. Genes Dev
200; 14: 1589-94.
65. Zhang Y, Wu X, Guo D, et al. Lesion bypass activities of human
DNA polymerase mu. J Biol Chem 2002;277:44582
e
23.
87. Mizrahi V, Benkovic SJ. The dynamics of DNA polymerase-cata-
lyzed reactions. Adv Enzymol Relat Areas Mol Biol 1988;61:437
e
57.
88. Berdis AJ. Mechanisms of DNA polymerases. Chem Rev 2009;
109:2862
e
7.
66. Haracska L, Prakash L, Prakash S. Role of human DNA poly-
merase kappa as an extender in translesion synthesis. Proc Natl
Acad Sci USA 2002;99:16000
e
79.
89. Johnson KA. The kinetic and chemical mechanism of high-fidelity
DNA polymerases. Biochim Biophys Acta 2010;1804:1041
e
8.
90. Wong I, Patel SS, Johnson KA. An induced-fit kinetic mechanism
for DNA replication fidelity: direct measurement by single-
turnover kinetics. Biochemistry 1991;30:526
e
5.
67. Haracska L, Prakash S, Prakash L. . Yeast DNA polymerase zeta is
an efficient extender of primer ends opposite from 7,8-dihydro-8-
Oxoguanine and O6-methylguanine. Mol Cell Biol 2003;23:1453
e
37.
91. Bakhtina M, Lee S, Wang Y, Dunlap C, Lamarche B, Tsai MD. Use
of viscogens, dNTPalphaS, and rhodium(III) as probes in
stopped-flow experiments to obtain new evidence for the mech-
anism of catalysis by DNA polymerase beta. Biochemistry 2005;
44:5177
e
9.
68. Arana ME, Seki M, Wood RD, Rogozin IB, Kunkel TA. Low-
fidelity DNA synthesis by human DNA polymerase theta. Nucleic
Acids Res 2008;36:3847
e
56.
69. Takata K, Shimizu T, Iwai S, Wood RD. Human DNA polymerase
N (POLN) is a low fidelity enzyme capable of error-free bypass of
5S-thymine glycol. J Biol Chem 2006;281:23445
e
87.
92. Reardon JE. Human immunodeficiency virus reverse transcrip-
tase. A kinetic analysis of RNA-dependent and DNA-dependent
DNA polymerization. J Biol Chem 1993;268:8743
e
55.
70. Prasad R, Longley MJ, Sharief FS, Hou EW, Copeland WC,
Wilson SH. Human DNA polymerase theta possesses 5'-dRP
lyase activity and functions in single-nucleotide base excision
repair in vitro. Nucleic Acids Res 2009;37:1868
e
51.
93. Patel SS, Wong I, Johnson KA. Pre-steady-state kinetic analysis of
processive DNA replication including complete characterization
of an exonuclease-deficient mutant. Biochemistry 1991;30:511
e
77.
71. Goff JP, Shields DS, Seki M, et al. Lack of DNA polymerase theta
(POLQ) radiosensitizes bone marrow stromal cells in vitro and
increases reticulocyte micronuclei after total-body irradiation.
Radiat Res 2009;172:165
e
25.
94. Steitz TA, Steitz JA. A general two-metal-ion mechanism for
catalytic RNA. Proc Natl Acad Sci, USA 1993;90:6498
e
502.
95. Mildvan AS, Loeb LA. The role of metal ions in the mechanisms
of DNA and RNA polymerases. CRC Crit Rev Biochem 1979;
1979(6):219
e
74.
72. Ito J, Braithwaite DK. Compilation and alignment of DNA
polymerase sequences. Nucleic Acids Res 1991;19:4045
e
e
57.
e
44.
Search WWH ::




Custom Search