Environmental Engineering Reference
In-Depth Information
Panda P, Kumar V, Mongia H, Naik S (2012a) Innovative approaches for reducing CO 2 emissions
of aviation engines part 4: turbine exhaust driven thermal cycle TED-T. AIAA paper 2012-
4230
Panda P, Kumar V, Mongia H, Naik S (2012b) Innovative approaches for reducing CO 2 emissions
of aviation engines part 5: turbo reaction-controlled internal combustion system TRCS. AIAA
paper 2012-3952
Paskin MD, Ross PT, Mongia HC, Acosta WA (1990) Composite matrix cooling scheme for small
gas turbine combustors. AIAA paper 1990-2158
Paskin MD, Mongia HC, Acosta WA (1993) An efficient liner cooling scheme for advanced small
gas turbine combustors. AIAA paper 1993-1763
Rida S et al (2012) Imprinted effusion modeling and dynamic CD calculation in gas turbine
combustors. GT2012-68804
Rizk NK, Mongia HC (1990) Lean low NO x combustion concept evaluation. In: 23rd international
symposium on combustion. The Combustion Institute, pp 1063
1070
Roberts R, Fiorentino A, Greene W (1977) Experimental clean combustor program phase III
-
—
final report. NASA CR-135253, Oct 1977
Ross PT, Williams JR, Anderson DA (1983) AIAA J Energy 7:429
Sanborn JW, Mongia HC, Kidwell JR (1983) Design of a low-emission combustor for an
automotive gas turbine. AIAA paper 83-0338
Segalman I, McKinney RG, Sturgess GJ, Huang LM (1993) Reduction of NO x by fuel-staging in
gas turbine engines-A commitment to the future. In: AGARD Conference Proceedings
Sekar J et al (2014) Liquid jet in cross flow modeling. GT2014-26124
Sen BA et al (2012) Pratt and Whitney gas turbine combustor design using ANSYS
fl
uent and user
defined functions. GT2012-70145
Snecma (2014). http://www.snecma.com/-leap-x,381-.html?lang=en . Accessed 13 July 2014
Sung CJ (2014) Personal communication
Sripathi M et al (2014) Laminar
fl
flamelet based NO x predictions for gas turbine combustors.
GT2014-27258
Stearns EM et al (1982) Energy ef cient engine core design and performance report. NASA
CR-168069, Dec 1982
Tacina RR (1990) Low NO x potential of gas turbine engines. AIAA paper 90-0550
Tacina R, Mao C-P, Wey C (2004) Experimental investigation of a multiplex fuel injector module
with discrete jet swirlers for low emissions combustors. AIAA-2004-0135
Tacina R, Lee P, Wey C (2005a) A lean-direct-injection combustor using a 9 point swirl-venturi
fuel injector. ISABE-2005-1106
Tacina R, Wey C, Laing P, Mansour A (2005b) Low-NO x lean-direct injection, multi-point
integrated module combustor concept for advanced aircraft gas turbines. NASA/TMX 2002-
211347
Tacina KM, Chang CT, He ZJ, Lee P, Dam B, Mongia H (2014) A second generation swirl-venturi
lean direct injection combustion concept. AIAA paper 2014
3434
Therkelsen PL, Littlejohn D, Cheng RK (2012) Parametric study of low-swirl injector geometry on
its operability. GT2012-68436
Villalva R et al (2013) Medium pressure emissions of a multi-point low NO x combustion system.
AIAA paper 2013-1044
Wey C, Bulzan D (2013) Effects of bio-derived fuels on emissions and performance using a
9-point lean direct injection low emissions concept. GT2013-95135
-
Search WWH ::




Custom Search