Environmental Engineering Reference
In-Depth Information
Fureby C (2012) A comparative study of flamelet and finite rate chemistry LES for a swirl
stabilized flame. J Eng Gas Turbines Power 134: 041503-1 - 041503-13
Gejji R, Huang C, Yoon C, Anderson W (2014) A parametric study of combustion dynamics in a
single-element lean direct injection (LDI) gas turbine combustor. AIAA paper 2014-133
Gleason CC, Bahr DW (1979) Experimental clean combustor program, phase III final report.
NASA CR-135384, June 1979
Gleason CC, Rogers DW, Bahr DW (1975) Experimental clean combustor program, phase II
final report. NASA CR-134971, July 1975
Gupta AK et al (1991) Burner geometry effects on combustion and NO X emission characteristics
using a variable geometry swirl combustor. J Propul 7(4):473
480
Iudiciani P et al (2009) Characterization of a multi-swirler fuel injector using simultaneous laser
based planar measurements of reaction zone,
-
fl
ow field, and fuel distribution, 2009. GT2009-
60278
Johansen KM, Johnston BH, Mongia HC, Sanborn JW (1977) Combustion process testing for
reduced wall temperature gradients. In: Proceedings 1977 DARPA/NAVSEA ceramic gas
turbine demonstration engine program review
Joshi ND, Mongia HC, Leonard G, Steggmaier JW, Vickers EC (1998) Dry low emissions
combustor development. ASME paper 98-GT-310
Kumar V, Panda P, Mongia H, Naik S (2012a) Innovative approaches for reducing CO 2 emissions
of aviation engines part 1: selection of promising approaches. AIAA Paper 2012-3951
Kumar V, Panda P, Mongia H, Naik S (2012b) Innovative approaches for reducing CO 2 emissions
of aviation engines part 2: NPSS calibration with existing gas turbine engines. AIAA paper
2012-4228
Kumar V, Panda P, Mongia H, Naik S (2012c) Innovative approaches for reducing CO 2 emissions
of aviation engines part 3: advanced Brayton cycle optimization. AIAA paper 2012-4175
Kurzke J (2009) Fundamental differences between conventional and geared turbofans. GT2009-
59745
Lee CM, Chang C, Kramer S, Herbon JT (2013) NASA project develops next generation low-
emissions combustor technologies. AIAA paper 2013-540
Li G, Gutmark E (2005) Effect of exhaust nozzle geometry on combustor
fl
ow field and
2901
Li G, Gutmark E (2006) Experimental study of boundary conditions effects on non-reacting and
reacting
combustion characteristics. Proc. Comb. Inst. 30:2893
-
456
Lieuwen T (2012) Unsteady combustor physics. Cambridge Press, Cambridge
Lieuwen TC, Yang V (Eds) (2005) Progress in Astronautics and Aeronautics, vol 210
Longwell JP (1977) Synthetic fuels and combustion. Prog Energy Combust Sci 3:127 - 138
M ' Bengue L (2010) Toward ACARE 2020: innovative engine architectures to achieve the
environmental goals? In: 27th international congress of the aeronautical sciences
McKinney RG, Sepulveda D, Sowa W, Cheung AK (2007) The Pratt &Whitney TALON X low
emissions combustor: revolutionary results with evolutionary technology. AIAA 2007-386
Mongia HC (1993) Application of CFD in combustor design technology. AGARD CP-536,
pp 12-1/12-18
Mongia HC (1997) Recent progress in low-emissions gas turbine combustors.
fl
flows in a multi-swirl gas turbine combustor. AIAA J 44(3):444
-
In: 13th
international symposium on air breathing engines, ISABE 1997
Mongia HC (2001a) Gas turbine combustor liner wall temperature calculation methodology.
AIAA 2001-3267
Mongia HC (2001b) A synopsis of gas turbine combustor design methodology evolution of last 25
years. ISABE-2001-1086
Mongia HC (2003) TAPS
a 4th generation propulsion combustor technology for low emissions.
AIAA paper 2003-2657
Mongia HC (2008) Recent progress in comprehensive modeling of gas turbine combustion. AIAA
paper 2008-1445
Mongia HC (2010a) On initiating 3rd generation of correlations for gaseous emissions of aero-
propulsion engines. AIAA paper 2010-1529
Search WWH ::




Custom Search