Information Technology Reference
In-Depth Information
˃)(
) =
× ˃)(
,
)
˃)(
) =
× ˃)(
,
).
t
Sup
x
y
, and
t
Sup
x
y
t
=
min
(
x
,
y
)
t
=
max
(
x
,
y
)
Without the proof, let's state:
( R , , )
Theorem 6.3.1
is a distributive lattice, that means:
μ ˃, μ ˃ ∈ R
μ ˃ = ˃ μ, μ μ = μ
μ ˃ = ˃ μ, μ μ = μ
μ ˃) = μ, μ ˃) = μ
μ ʻ) = ˃) ʻ)
μ ʻ) = ˃) ʻ)
,
R .
for all
μ, ˃, ʻ
in
R can be endowed with the partial order given by
Hence,
μ ˃ μ ˃ = μ μ ˃ = ˃.
6.3.1 Example
With X
={
1
,
2
,
3
}
, and
μ =
0
.
8
|
1
+
0
.
7
|
2
+
1
|
3
, ˃ =
0
.
9
|
1
+
1
|
2
+
0
.
6
|
3, compute
μ ˃
,
μ ˃
.
Since, t
=
min
(
x
,
y
)
and t
=
max
(
x
,
y
)
belong to
{
1
,
2
,
3
}
, it results:
˃)(
t
) =
Max
) [
min
(μ(
x
), ˃(
y
)) ]
, and:
t
=
min
(
x
,
y
-
˃)(
1
) =
max
(
min
(μ(
1
), ˃(
1
)),
min
(μ(
1
), ˃(
2
)),
min
(μ(
2
), ˃(
1
)),
min
(μ(
1
), ˃(
3
)),
min
(μ(
3
), ˃(
1
)) =
max
(
min
(
0
.
8
,
0
.
9
),
min
(
0
.
8
,
1
),
min
(
0
.
7
,
0
.
9
),
min
(
0
.
8
,
0
.
6
),
min
(
1
,
0
.
9
)) =
max
(
0
.
8
,
0
.
8
,
0
.
7
,
0
.
6
,
0
.
9
) =
0
.
9
-
˃)(
2
) =
max
(
min
(μ(
2
), ˃(
3
)),
min
(μ(
3
), ˃(
2
)))
=
max
(
min
(
0
.
7
,
0
.
6
),
min
(
1
,
1
)) =
max
(
0
.
6
,
1
) =
1
-
˃)(
3
) =
min
(μ(
3
), ˃(
3
)) =
min
(
1
,
0
.
6
) =
0
.
6
that is
μ ˃ =
0
.
9
|
1
+
1
|
2
+
0
.
6
|
3.
This fuzzy set is different from
μ · ˃ =
0
.
8
|
1
+
0
.
7
|
2
+
0
.
6
|
3, with the t-norm min .
˃)(
t
) =
Max
) [
min
(μ(
x
), ˃(
y
)) ]
, and:
t
=
max
(
x
,
y
-
˃)(
1
) =
min
(μ(
1
), ˃(
1
)) =
min
(
0
.
8
,
0
.
9
) =
0
.
8
-
˃)(
2
) =
max
(
min
(μ(
1
), ˃(
2
)),
min
(μ(
2
), ˃(
1
)))
=
(
(
.
,
),
(
.
,
.
)) =
(
.
,
.
) =
.
max
min
0
8
1
min
0
7
0
9
max
0
8
0
7
0
8
 
Search WWH ::




Custom Search