Information Technology Reference
In-Depth Information
For example,
•[
7
,
8
]↕[−
1
,
9
]=[
6
,
17
]
•[
7
,
8
][−
1
,
9
]=[−
2
,
9
]
•[
3
,
4
][
2
,
2
]=[
6
,
8
]
•[
4
,
10
] ÷ [
1
,
2
]=[
2
,
10
]
2
↕[
7
,
8
]=[
2
,
2
]↕[
7
,
8
]=[
9
,
10
]
2
[
7
,
8
]=[
2
,
2
][
7
,
8
]=[
min
(
14
,
16
,
14
,
16
),
max
(
14
,
16
) ]=[
14
,
16
]
]= min 2 ,
2 ,
max 2 ,
2 = 2 ,
4
8
8
•[
7
,
8
] ÷ 2
=[
7
,
8
] ÷ [
2
,
2
In short, and accordingly with the 'preservation of the classical case', through
the extension principle both the numerical and the interval arithmetics are preserved.
What follows is a yet larger arithmetic with fuzzy concepts.
For all
] R , and all r
μ ∈[
0
,
1
∈[
0
,
1
]
, it can be computed that:
(
r
μ)(
t
) = r μ)(
t
) =
Sup
min
r (
x
), μ(
y
))
t
=
x
+
y
min 1
μ(
, μ(
y
),
if x
=
r
y
),
x
=
r
=
Sup
=
Sup
0
, μ(
y
),
if x
=
r
0
,
x
=
r
t
=
x
+
y
t
=
x
+
y
= μ(
t
r
).
((
) μ)(
) = μ(
)
1 μ)(
) = μ(
)
0 μ)(
) = μ(
)
Hence
1
t
t
1
,
t
t
1
,
t
t
.
)) = μ r ,if r
(
r
μ)(
t
) = r μ)(
t
) =
Sup
t
min
r (
x
), μ(
t
=
0. Hence,
=
x
·
y
r
μ (
t
) = μ(
rt
)
,
(
1
μ)(
t
) = μ(
t
)
,
1 μ)(
t
) = μ(
t
)
.
0 μ)(
t
) =
Sup
t = x · y
min
0 (
x
), μ(
t
)) =
0
= μ 0 (
t
)
.
μ t ,
if t
=
0
1
μ (
t
) =
Sup
t =
min
(
1
, μ(
y
)) =
Sup
t =
y μ(
y
) =
0
,
if t
=
0
x
y
x
Example 6.1.1 Given the fuzzy set
compute 2
μ
and 2
μ
.
It is
(
2
μ)(
t
) = μ(
t
/
2
)
, and
(
2
μ)(
t
) = μ(
t
2
)
. Hence,
Search WWH ::




Custom Search