Information Technology Reference
In-Depth Information
μ R is T-transitive, and T 1 is a t-norm such that
Remark 4.3.3 If the fuzzy relation
T 1
μ R is also T 1 -transitive, since
T , then
T 1 R (
x
,
y
), μ R (
y
,
z
))
T
R (
x
,
y
), μ R (
y
,
z
)) μ R (
x
,
z
),
for all x
,
y
,
z .
4.4 The Concept of T-State
Given a fuzzy relation
μ :
X
×
X
ₒ[
0
,
1
]
and a continuous t-norm T , a fuzzy set
˃ :
X
ₒ[
0
,
1
]
is a T -state of
μ
,if
T
(˃(
x
), μ(
x
,
y
)) ˃(
y
), (
x
,
y
)
X
×
X
.
All constant fuzzy sets
μ k (
x
) =
k for all x
X , and k
∈[
0
,
1
]
, are T-states of
any fuzzy relation
μ :
X
×
X
ₒ[
0
,
1
]
: T
k (
x
), μ(
x
,
y
)) μ k (
x
) =
k
= μ k (
y
)
.
For example,
μ 0
= μ and
μ 1 = μ X , are always T -states. Hence, the set T
(μ)
of
all T -states
˃
of
μ
is never empty. From now on, in general we will only refer to non
constant T -states
˃
.
μ :
×
ₒ[
,
]
Given a fuzzy relation
X
Y
0
1
, once y
Y is fixed, we can define
μ y :
×
ₒ[
,
]
the fuzzy set
X
X
0
1
, defined by,
μ y (
x
) = μ(
x
,
y
),
for all x
X
.
When X
,
Y are finite sets,
μ y is the y-column of the matrix
[ μ ]
.
If
μ :
X
×
X
ₒ[
0
,
1
]
is a symmetric and T -transitive fuzzy relation, from
T
(μ(
x
,
y
), μ(
y
,
z
)) μ(
x
,
z
),
for all x
,
y
,
z in X
,
follows T
(μ(
y
,
x
), μ(
y
,
z
)) μ(
z
,
x
)
,or
T
x (
y
), μ(
y
,
z
)) μ x (
z
),
that is,
μ x is a T -state of
μ
.
For example, with X
={
x 1 ,
x 2 ,
x 3 }
and
μ :
X
×
X
ₒ[
0
,
1
]
given by
11
/
82
/
8
[ μ ]=
1
/
813
/
8
2
/
83
/
81
 
Search WWH ::




Custom Search