Biomedical Engineering Reference
In-Depth Information
Consequently, while single instruments can deliver valuable first insight into whether
exposure to nanoparticles may occur in a workplace, a well thought-through suite
of instruments tailored for the specific task is needed for a full workplace aerosol
characterization.
REFERENCES
Asbach, C., Fissan, H., Stahlmecke, B., Kuhlbusch, T.A.J., Fissan, H. (2009a): Conceptual
imitations and extensions of lung-deposited nanoparticle surface area monitor (NSAM),
J Nanopart Res , 11: 101-109.
Asbach, C., Kaminski, H., Fissan, H., Monz, C., Dahmann, D., Mülhopt, S., Paur, H.R. et al.
(2009b): Comparison of four mobility particle sizers with different time resolution for
stationary exposure measurements, J Nanopart Res , 11: 1593-1609.
Asbach, C., Kaminski, H., Von Barany, D., Kuhlbusch, T.A.J., Monz, C., Dziurowitz, N.,
Pelzer, J. et al. (2012): Comparability of portable nanoparticle exposure monitors, Ann
Occup Hyg , 56: 606-621.
Azong-Wara, N., Asbach, C., Stahlmecke, B., Fissan, H., Kaminski, H., Plitzko, S., Bathen,
D., Kuhlbusch, T.A.J. (2013): Design and experimental evaluation of a new nanoparticle
thermophoretic sampler, J Nanopart Res , 15: 1-12.
Azong-Wara, N., Asbach, C., Stahlmecke, B., Fissan, H., Kaminski, H., Plitzko, S., Kuhlbusch,
T.A.J. (2009): Optimisation of a thermophoretic personal sampler for nanoparticle expo-
sure studies, J Nanopart Res , 11: 1611-1624.
Baron, P.A. (1986): Calibration and use of the aerodynamic particle sizer (APS 3300), Aerosol
Sci Technol , 5: 55-67.
Borggräfe, P. (2000): Erweiterung des Meßbereichs von optischen Partikelzählern durch
gezielte Reduzierung der Störquellen und mit digitalen Signalverarbeitungsmethoden,
Ph.D. Thesis at Gerhard Mercator University Duisburg , available online: http://duepub-
lico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-5033/bodiss.pdf (accessed
November 23rd, 2013).
Burtscher, H., Schmidt-Ott, A. (2009): Method and device for measuring number concentra-
tion and mean diameter of particles suspended in a carrier gas, European Patent EP
1655595 B1, November 3rd, 2004.
Chen, D.R., Pui, D.Y.H., Hummes, D., Fissan, H., Quant, F.R., Sem, G.J. (1998): Design
and evaluation of a nanometer aerosol differential mobility analyzer (Nano-DMA),
J Aerosol Sci , 29: 497-509.
Cunningham, E. (1910): On the velocity of steady fall of spherical particles through fluid
medium, Proc Royal Soc Series A , 83: 357-365.
Dixkens, J., Fissan, H. (1999): Development of an electrostatic precipitator for off-line particle
analysis, Aerosol Sci Technol , 30: 438-453.
Farnsworth, J., Quant, F., Horn, H.-G., Osmondson, B., Caldow, R. (2013): Fast scanning
mobility particle sizing system and classifier, Oral Presentation at the European Aerosol
Conference , September 1st, 2013, Prague, Czech Republic.
Fierz, M., Houle, C., Steigmeier, P., Burtscher, H. (2011): Design, calibration, and field perfor-
mance of a miniature diffusion size classifier, Aerosol Sci Technol , 45: 1-10.
Fierz, M., Meier, D., Steigmeier, P., Burtscher, H. (2014): Aerosol measurement by induced
currents, Aerosol Sci Technol , 48: 350-357.
Fissan, H., Helsper, C., Thielen, H.J. (1983): Determination of particle size distribution by
means of an electrostatic classifier, J Aerosol Sci , 14: 354-357.
Fissan, H., Neumann, S., Trampe, A., Pui, D.Y.H., Shin, W.G. (2007): Rationale and principle
of an instrument measuring lung deposited nanoparticle surface area, J Nanopart Res ,
9: 53-59.
Search WWH ::




Custom Search