Biomedical Engineering Reference
In-Depth Information
further research. In particular, persistence and accumulation potential for the materi-
als should be evaluated so that places of higher concentration of free CNT fiber can
be identified and studied.
ACKNOWLEDGMENT
We thank Wendel Wohlleben for his very helpful comments and for the contribution
of Table 18.1 to this chapter.
REFERENCES
Aschberger, K., Johnston, H. J., Stone, V., Aitken, R. J., Hankin, S. M., Peters, S. A., Tran, C. L.,
Christensen, F. M. (2010). Review of carbon nanotubes toxicity and exposure-appraisal
of human health risk assessment based on open literature. Crit. Rev. Toxicol. 40: 759-790.
Balasubramanian K., Burghard, M. (2005). Chemically functionalized carbon nanotubes,
Small 1: 180-192.
Bello D., Wardle, B. L., Zhang, J., Yamamoto, N., Santeufemio, C., Hallock, M. et al. (2010).
Characterization of exposures to nanoscale particles and fibers during solid core drilling
of hybrid carbon nanotube advanced composites. Int. J. Occup. Environ. Health. 16:
434-450.
Bonner J.C. (2014). Uptake and Effects of Carbon Nanotubes. In Wohlleben, Kuhlbusch,
Schnekenburger, Lehr, eds, Safety of Nanomaterials along Their Life cycle: Release,
Exposure and Human Hazard , Taylor & Francis.
Bouillard J. X., R'Mili, B., Moranviller, D., Vignes, A., Le Bihan, O., Ustache, A. et al. (2013).
Nanosafety by design: Risks from nanocomposite/nanowaste combustion. J. Nanopart.
Res. 15: 1-11.
Canady, R., Kuhlbusch, T., Renker, M., Lee, E., Tsytsikova, L. (2013). Comparison of Existing
Studies of Release Measurement for CNT-Polymer Composites. http://www.ilsi.org/
ResearchFoundation/RSIA/Documents/NanoRelease%20Consumer%20Products%20
Phase%202.5%20Report.pdf.
Cena L. G., Peters, T. M. (2011). Characterization and control of airborne particles emitted
during production of epoxy/carbon nanotube nanocomposites. J. Occup. Environ. Hyg.
8: 86-92.
Coccini, T., Manzo, L., Roda, E. (2013). Safety evaluation of engineered nanomaterials for
health risk assessment: An experimental tiered testing approach using pristine and func-
tionalized carbon nanotubes. ISRN Toxicol. 2013: 825427.
Cornelis G., Hund-Rinke, K., Kuhlbusch, T., Van den Brink, N., Nickel, C. (2014). Fate and
bioavailability of engineered nanoparticles in soils: A review. Crit. Rev. Environ. Sci.
Technol. In press.
De Volder, M. F., Tawfick, S. H., Baughman, R. H., Hart, A. J. (2013). Carbon nanotubes:
Present and future commercial applications. Science 339: 535-539.
Donaldson, K., Aitken, R., Tran, L., Stone, V., Duffin, R., Forrest, G., Alexander, A. (2006).
Carbon nanotubes: A review of their properties in relation to pulmonary toxicology and
workplace safety. Toxicol. Sci. 92: 5-22.
Donaldson, K., Poland, C. A., Murphy, F. A., MacFarlane, M., Chernova, T., Schinwald, A.
(2013). Pulmonary toxicity of carbon nanotubes and asbestos—Similarities and differ-
ences. Advanced drug delivery reviews 65: 2078-2086.
Fleury, D., Bomfim, J. A. S., Vignes, A., Girard, C., Metz, S., Muñoz, F., Romili, B., Ustache,
A., Guiot, A., and Bouillard, J.X. (2013). Identification of the main exposure scenarios in
the production of CNT-polymer nanocomposites by melt-moulding process. J. Cleaner
Prod. 53: 22-36.
Search WWH ::




Custom Search