Biomedical Engineering Reference
In-Depth Information
Safe SH. (1998). Development validation and problems with the toxic equivalency factor
approach for risk assessment of dioxins and related compounds. J AnimSci 76:134-141.
Sager TM, Porter DW, Robinson VA, Lindsley WG, Schwegler-Berry DE, Castranova V.
(2007). An improved method to disperse nanoparticles for in vitro and in vivo investiga-
tion of toxicity. Nanotoxicol 1:118-129.
Sauer UG, Vogel S, Aumann A, Strauss V, Dammann M, Treumann S, Wohlleben W, Kolle SN,
Gröters S, Wiench K, van Ravenzwaay B, Landsiedel R. (2013). Cytotoxicity, apoptosis,
oxidative stress, and inflammation induced by 16 OECD reference nanomaterials in rat
precision-cut lung slices. Toxicol Appl Pharmacol in press.
SCENIHR. (2009). The Scientific Committee on Emerging and Newly Identified Health
Risks Opinion on Risk assessment of products of nanotechnologies. 19 January 2009;
available at: http://ec.europa.eu/health/archive/ph_risk/committees/04_scenihr/docs/
scenihr_o_023.pdf.
Schleh C, Kreyling WG, Lehr C-M. (2013). Pulmonary surfactant is indispensable in order to
simulate the in vivo situation. Part Fibre Toxicol 10:6.
Schulze C, Kroll A, Lehr C, Schäfer UF, Becker K, Schnekenburger J, Schulze Isfort C,
Landsiedel R, Wohlleben W. (2008). Not ready to use - Overcoming pitfalls when dis-
persing nanoparticles in physiological media. Nanotoxicol 2(2):51-61.
Shvedova AA, Tkach AV, Kisin ER, Khaliullin T, Stanley S, Gutkin DW, Star A, Chen Y,
Shurin GV, Kagan VE, Shurin MR. (2013). Carbon nanotubes enhance metastatic
growth of lung carcinoma via up-regulation of myeloid-derived suppressor cells. Small
9:1691-1695.
Som C, Nowack B, Krug HF, Wick P. (2012). Toward the development of decision supporting tools
that can be used for safe production and use of nanomaterials. Acc Chem Res 46:863-872.
Spielmann H, Sauer UG, Mekenyan O. (2011). A critical evaluation of the 2011 ECHA reports
on compliance with the REACH and CLP regulations and on the use of alternatives to
testing on animals for compliance with the REACH regulation. ATLA 39, 481-493.
Stone V, Nowack B, Baun A, van den Brink N, von der Kammer F, Dusinska M, Handy R,
Hankin S, Hassellöv M, Joner E, Fernandes TF. (2010). Nanomaterials for environmen-
tal studies: classification, reference material issues, and strategies for physico-chemical
characterisation. Sci Total Env 408:1745-1754.
Teeguarden JG, Hinderliter PM, Orr G, Thrall BD, Pounds JG. (2007). Particokinetics in
vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol
Sci 95:300-12. (erratum in: Toxicol Sci. 2007. 97:614).
Thomas CR, George S, Horst AM, Ji Z, Miller RJ, Peralta-Videa JR, Xia T, Pokhrel S, Mädler
L, Gardea-Torresdey JL, Holden PA, Keller AA, Lenihan HS, Nel AE, Zink JI. (2011).
Nanomaterials in the environment: From materials to high-throughput screening to
organisms. ACS nano 5:13-20.
van Leeuwen CJ, Patlewicz GY, Worth AP. (2007). Intelligent Testing Strategies In: van
Leeuwen CJ, Vermeire TG, Vermeire T, eds. Risk assessment of chemicals: An intro-
duction, Springer, Heidelberg, Germany, 467-509.
Wang X, Xia T, Ntim SA, Ji Z, George S, Meng H, Zhang H, Castranova V, Mitra S, Nel AE.
(2010). Quantitative techniques for assessing and controlling the dispersion and bio-
logical effects of multiwalled carbon nanotubes in mammalian tissue culture cells. ACS
nano 4:7241-7252.
Wang X, Xia T, Ntim SA, Ji Z, Lin S, Meng H, Chung CH, George S, Zhang H, Wang M, Li
N, Yang Y, Castranova V, Mitra S, Bonner JC, Nel AE. (2011). Dispersal state of mul-
tiwalled carbon nanotubes elicits profibrogenic cellular responses that correlate with
fibrogenesis biomarkers and fibrosis in the murine lung. ACS nano 5:9772-9787.
Wohlleben W. (2012). Validity range of centrifuges for the regulation of nanomaterials: From
classification to as-tested coronas. J Nanopart Res 14:1300.
Search WWH ::




Custom Search