Biomedical Engineering Reference
In-Depth Information
2013a; Alkilany et al. 2009). The coating chemicals may act as toxic agents them-
selves, diminish the release of ions, or alter the adsorption of biomolecules such as
proteins or lipids, which then could influence the particle-cell interaction.
Taken together, the picture emanating from the findings described earlier is
that the toxicity of metal nanoparticles is driven by physicochemical properties of
nanoparticles. Thus, size, solubility, and surface coating may act in concert on bio-
distribution and secondary biological responses, which share many components with
metal ion toxicity.
REFERENCES
Ahamed, M., M. Karns, M. Goodson, J. Rowe, S. M. Hussain, J. J. Schlager, and Y. Hong.
2008. DNA damage response to different surface chemistry of silver nanoparticles in
mammalian cells. Toxicol Appl Pharmacol 233 (3):404-10.
Albanese, A., and W. C. Chan. 2011. Effect of gold nanoparticle aggregation on cell uptake
and toxicity. ACS Nano 5 (7):5478-89.
Alkilany, A. M., P. K. Nagaria, C. R. Hexel, T. J. Shaw, C. J. Murphy, and M. D. Wyatt. 2009.
Cellular uptake and cytotoxicity of gold nanorods: Molecular origin of cytotoxicity and
surface effects. Small 5 (6):701-8.
Arora, S., J. Jain, J. M. Rajwade, and K. M. Paknikar. 2009. Interactions of silver nanoparticles
with primary mouse fibroblasts and liver cells. Toxicol Appl Pharmacol 236 (3):310-8.
Asharani, P. V., Y. Lianwu, Z. Gong, and S. Valiyaveettil. 2011. Comparison of the toxicity of
silver, gold and Platinum nanoparticles in developing zebrafish embryos. Nanotoxicology
5 (1):43-54.
Asharani, P. V., G. Low Kah Mun, M. P. Hande, and S. Valiyaveettil. 2009. Cytotoxicity and
genotoxicity of silver nanoparticles in human cells. ACS Nano 3 (2):279-90.
Asharani, P. V., N. Xinyi, M. P. Hande, and S. Valiyaveettil. 2010. DNA damage and p53-medi-
ated growth arrest in human cells treated with Platinum nanoparticles. Nanomedicine
(Lond) 5 (1):51-64.
Bar-Ilan, O., R. M. Albrecht, V. E. Fako, and D. Y. Furgeson. 2009. Toxicity assessments of
multisized gold and silver nanoparticles in zebrafish embryos. Small 5 (16):1897-910.
Bouwmeester, H., J. Poortman, R. J. Peters, E. Wijma, E. Kramer, S. Makama, K.
Puspitaninganindita, H. J. Marvin, A. A. Peijnenburg, and P. J. Hendriksen. 2011.
Characterization of translocation of silver nanoparticles and effects on whole-genome
gene expression using an in vitro intestinal epithelium coculture model. ACS Nano 5
(5):4091-103.
Braydich-Stolle, L. K., B. Lucas, A. Schrand, R. C. Murdock, T. Lee, J. J. Schlager, S. M.
Hussain, and M. C. Hofmann. 2010. Silver nanoparticles disrupt GDNF/Fyn kinase sig-
naling in spermatogonial stem cells. Toxicol Sci 116 (2):577-89.
Browning, L. M., K. J. Lee, T. Huang, P. D. Nallathamby, J. E. Lowman, and X. H. Xu. 2009.
Random walk of single gold nanoparticles in zebrafish embryos leading to stochastic
toxic effects on embryonic developments. Nanoscale 1 (1):138-52.
Cecconi, I., A. Scaloni, G. Rastelli, M. Moroni, P. G. Vilardo, L. Costantino, M. Cappiello,
D. Garland, D. Carper, J. M. Petrash, A. Del Corso, and U. Mura. 2002. Oxidative modi-
fication of aldose reductase induced by copper ion. Definition of the metal-protein inter-
action mechanism. J Biol Chem 277 (44):42017-27.
Chang, A. L., V. Khosravi, and B. Egbert. 2006. A case of argyria after colloidal silver inges-
tion. J Cutan Pathol 33 (12):809-11.
Chen, Y. S., Y. C. Hung, I. Liau, and G. S. Huang. 2009. Assessment of the in vivo Toxicity of
Gold Nanoparticles. Nanoscale Res Lett 4 (8):858-64.
Search WWH ::




Custom Search