Biomedical Engineering Reference
In-Depth Information
Morrow, P. E. 1988. Possible mechanisms to explain dust overloading of the lungs. Fundam
Appl Toxicol 10 (3):369-384.
Naya, M., N. Kobayashi, M. Ema, S. Kasamoto, M. Fukumuro, S. Takami, M. Nakajima,
M. Hayashi, and J. Nakanishi. 2012. In vivo genotoxicity study of titanium dioxide
nanoparticles using comet assay following intratracheal instillation in rats. Regul Toxicol
Pharmacol 62 (1):1-6.
Nel, A. E., L. Madler, D. Velegol, T. Xia, E. M. Hoek, P. Somasundaran, F. Klaessig,
V.  Castranova, and M. Thompson. 2009. Understanding biophysicochemical interac-
tions at the nano-bio interface. Nat Mater 8 (7):543-557.
Oberdorster, G., E. Oberdorster, and J. Oberdorster. 2005. Nanotoxicology: An emerging disci-
pline evolving from studies of ultrafine particles. Environ Health Perspect 113 (7):823-839.
OECD TG471. Bacterial reverse mutation test, Adopted 21 July, 1997.
OECD TG487. In vitro mammalian cell micronucleus test, Adopted 22 July, 2010.
Oesch, F. and R. Landsiedel. 2012. Genotoxicity investigations on nanomaterials. Arch Toxicol
86 (7):985-994.
Pan, Z., W. Lee, L. Slutsky, R. A. Clark, N. Pernodet, and M. H. Rafailovich. 2009. Adverse
effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to pro-
tect cells. Small 5 (4):511-520.
Panas, A., C. Marquardt, O. Nalcaci, H. Bockhorm, W. Baumann, H. R. Paur, S. Mülhopt,
S.  Diabate, C. Weiss. 2013. Screening of different metal oxide nanoparticles reveals
selective toxicity and inflammatory potential of silica nanoparticles in lung epithelial
cells and macrophages. Nanotoxicology 7 (3):259-273
Park, E. J., J. Choi, Y. K. Park, and K. Park. 2008a. Oxidative stress induced by cerium oxide
nanoparticles in cultured BEAS-2B cells. Toxicology 245 (1-2):90-100.
Park, E. J., J. Yi, K. H. Chung, D. Y. Ryu, J. Choi, and K. Park. 2008b. Oxidative stress and
apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol
Lett 180 (3):222-229.
Pauluhn, J. 2009. Retrospective analysis of 4-week inhalation studies in rats with focus on
fate and pulmonary toxicity of two nanosized aluminum oxyhydroxides (boehmite) and
pigment-grade iron oxide (magnetite): The key metric of dose is particle mass and not
particle surface area. Toxicology 259 (3):140-148.
Petkovic, J., T. Kuzma, K. Rade, S. Novak, and M. Filipic. 2011. Pre-irradiation of anatase
TiO 2 particles with UV enhances their cytotoxic and genotoxic potential in human hepa-
toma HepG2 cells. J Hazard Mater 196:145-152.
Pfuhler, S., R. Elespuru, M. J. Aardema, S. H. Doak, E. Maria Donner, M. Honma, M. Kirsch-
Volders, R. Landsiedel, M. Manjanatha, T. Singer, and J. H. Kim. 2013. Genotoxicity
of nanomaterials: Refining strategies and tests for hazard identification. Environ Mol
Mutagen 54 (4):229-239.
Rehn, B., S. Rehn, and J. Bruch. 1999. Ein neues In-vitro-Prüfkonzept (Vektormodell) zum
biologischen Screening und Monitoring der Lungentoxizität von Stäuben. Gefahrstoffe -
Reinhaltung der Luft 59:181-188.
Robinson, C. E., A. Keshavarzian, D. S. Pasco, T. O. Frommel, D. H. Winship, and E. W.
Holmes. 1999. Determination of protein carbonyl groups by immunoblotting. Anal
Biochem 266 (1):48-57.
Saber, A. T., N. R. Jacobsen, A. Mortensen, J. Szarek, P. Jackson, A. M. Madsen, K. A.
Jensen, I. K. Koponen, G. Brunborg, K. B. Gutzkow, U. Vogel, and H. Wallin. 2012.
Nanotitanium dioxide toxicity in mouse lung is reduced in sanding dust from paint. Part
Fibre Toxicol 9 (4):8977-8979.
Sayes, C. M., K. L. Reed, and D. B. Warheit. 2007. Assessing toxicity of fine and nanopar-
ticles: Comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol
Sci 97 (1):163-180.
Search WWH ::




Custom Search