Biology Reference
In-Depth Information
70. Martin M, Negri F, Olivucci M (2004) Origin, nature, and fate of the fluorescent state of the
green fluorescent protein chromophore at the CASPT2//CASSCF resolution. J Am Chem Soc
71. Nifos` R, Amat P, Tozzini V (2007) Variation of spectral, structural and vibrational proper-
ties within the intrinsically fluorescent proteins family: a density functional study. J Comput
Chem 28:2366-2377
72. Yan W, Zhang L, Xie D, Zeng J (2007) Electronic excitations of green fluorescent proteins:
modeling solvatochromatic shifts of red fluorescent protein chromophore model compound
in aqueous solutions. J Phys Chem B 111(50):14055-14063
73. Olsen S, Smith SC (2008) Bond selection in the photoisomerization reaction of anionic green
fluorescent protein and kindling fluorescent protein chromophore models. J Am Chem Soc
74. Epifanovsky E, Polyakov I, Grigorenko B, Nemukhin A, Krylov AI (2009) Quantum
chemical benchmark studies of the electronic properties of the green fluorescent protein
chromophore. 1. Electronically excited and ionized states of the anionic chromophore in the
gas phase. J Chem Theory Comput 5(7):1895-1906
75. Ma Y, Rohlfing M, Molteni C (2010) Modeling the excited states of biological chromophores
within many-body green's function theory. J Chem Theory Comput 6(1):257-265
76. Kowalski K, Krishnamoorthy S, Villa O, Hammond JR, Govind N (2010) Active-space
completely-renormalized equation-of-motion coupled-cluster formalism: excited-state stud-
ies of green fluorescent protein, free-base porphyrin, and oligoporphyrin dimer. J Chem Phys
77. Xie D, Zeng J (2005) Electronic excitations of green fluorescent proteins: protonation states
of chromophore model compound in solutions. J Comput Chem 26(14):1487-1496
78. Wan S, Liu S, Zhao G, Chen M, Han K, Sun M (2007) Photoabsorption of green and red
fluorescent protein chromophore anions in vacuo . Biophys Chem 129(2-3):218-223
79. Olsen S, Smith SC (2007) Radiationless decay of red fluorescent protein chromophore
models via twisted intramolecular charge-transfer states. J Am Chem Soc 129(7):
80. Sanchez-Garcia E, Doerr M, Thiel W (2010) QM/MM study of the absorption spectra of
DsRed.m1 chromophores. J Comput Chem 31(8):1603-1612
81. Toniolo A, Granucci G, Martinez TJ (2003) Conical intersections in solution: a QM/MM
study using floating occupation semiempirical configuration interaction wave functions.
J Phys Chem A 107:3822
82. Drobizhev M, Tillo S, Makarov NS, Hughes TE, Rebane A (2009) Color hues in
red fluorescent proteins are due to internal quadratic stark effect. J Phys Chem B
83. Hasegawa J-Y, Ise T, Fujimoto KJ, Kikuchi A, Fukumura E, Miyawaki A, Shiro Y (2010)
Excited states of fluorescent proteins, mKO and DsRed: chromophore-protein electrostatic
interaction behind the color variations. J Phys Chem B 114(8):2971-2979
84. He X, Bell AF, Tonge PJ (2002) Synthesis and spectroscopic studies of model red fluorescent
protein chromophores. Org Lett 4(9):1523-1526
85. Laino T, Nifos ` R, Tozzini V (2004) Relationship between structure and optical properties in
green fluorescent proteins: an ab initio study of the active site. Chem Phys 298:17-28
86. Malo GD, Wang M, Wu D, Stelling AL, Tonge PJ, Wachter RM (2008) Crystal structure and
Raman studies of dsFP483, a cyan fluorescent protein from Discosoma striata . J Mol Biol
87. Henderson JN, Remington SJ (2005) Crystal structures and mutational analysis of
amFP486, a cyan fluorescent protein from Anemonia majano . Proc Natl Acad Sci USA
88. Henderson JN, Ai H-W, Campbell RE, Remington SJ (2007) Structural basis for reversible
photobleaching of a green fluorescent protein homologue. Proc Natl Acad Sci USA
Search WWH ::

Custom Search